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Abstract

The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), is the main reason for the increasing number of deaths worldwide. Although strict quarantine measures were
followed in many countries, the disease situation is still intractable. Thus, it is needed to utilize all possible means to
confront this pandemic. Therefore, researchers are in a race against the time to produce potential treatments to cure or
reduce the increasing infections of COVID-19. Computational methods are widely proving rapid successes in biological
related problems, including diagnosis and treatment of diseases. Many efforts in recent months utilized Artificial
Intelligence (AI) techniques in the context of fighting the spread of COVID-19. Providing periodic reviews and discussions of
recent efforts saves the time of researchers and helps to link their endeavors for a faster and efficient confrontation of the
pandemic. In this review, we discuss the recent promising studies that used Omics-based data and utilized AI algorithms
and other computational tools to achieve this goal. We review the established datasets and the developed methods that
were basically directed to new or repurposed drugs, vaccinations and diagnosis. The tools and methods varied depending on
the level of details in the available information such as structures, sequences or metabolic data.
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Introduction
The viral family Coronaviridae hit humanity by three deadly
and highly pathogenic viruses namely, SARS-CoV, MERS-CoV
and SARS-CoV-2. Coronaviruses (Covs) belong to a family of
enveloped, single-stranded and positive-sense RNA viruses.
There are four available genres of Covs: Alpha-CoV, Beta-
CoV, Gamma-Cov and delta-Cov [1]. Alpha-CoV and Beta-CoV
can cross animal-human barriers and emerge to be human
pathogens [2, 3]. so they are under close investigation.
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In December 2019, SARS-COV-2 was declared as the causative
agent of Coronavirus and was responsible for coronavirus
disease 2019 (COVID-19). It develops flu-like symptoms such
as sore throat, cough, headache and fever. These symptoms can
be developed into a severe respiratory failure [4]. Since then, the
reported number of the confirmed cases by the World Health
Organization (WHO) increased exponentially. Thus, it resulted
in global and dreadful threats in terms of economy and health.
Therefore, the researchers from different disciplines united
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together to find therapeutic drugs and vaccines to combat the
virus. In this regard, artificial intelligence (AI) with conventional
computational tools have proven to be promising methods for
accelerating drug discovery, and repurposing [5–8].

AI-based drug discovery and repurposing are powerful tools
for the identification of hit molecules for COVID-19 for rapid
and cost-effective identification. Therefore, many researchers
have already started using AI for developing different novel
methods for new drug discovery, drug repurposing and vac-
cine development. In general, AI has been used in almost all
steps of the drug discovery pipeline. It has been utilized for
designing a drug with a set of predefined properties including
toxicity, bioactivity and bioavailability. These properties have
been used for supervising the generation of new drugs using
generative models [9–11]. Furthermore, various AI-based models
have been used for quantitative structure–activity relationship
(QSAR) studies. Here, the matched molecular pair (MMP) analysis
[12] is used to evaluate the impact of altering a single localized
modification in a candidate drug on its bioactivity and molecular
properties [13, 14]. Another contribution of AI in drug discovery
is the prediction of the toxicity of a compound because it is
considered the most time-consuming and expensive task. For
instance, the deep learning-based model called DeepTox [15]
achieved outstanding results in Tox21 Data Challenge [15]. Also,
AI has a significant contribution in drug design such as the
prediction of target protein 3D structure and drug–target inter-
action (DTI). The 3D structure prediction of a target protein is
the main step in structure-based drug discovery (SBDD) because
it makes the process of designing new drug molecules relatively
attainable if the ligand-binding site is provided [16, 17]. Although
traditional methods such as de novo protein design and homol-
ogy modeling have been widely used [18–20], the obtained pre-
dictions were not always satisfying. Conversely, deep learning-
based methods showed a substantial leap in prediction accuracy.
The recent Critical Assessment of Protein Structure Prediction
(CASP 14) competition showed a scientific breakthrough made by
AlphaFold2. This model achieved the best prediction for 88 out
of 97 structures with accuracy comparable to the X-ray crystal-
lography experimental technique. The quantum mechanics and
the hybrid quantum mechanics with molecular mechanics DTI
methods employed AI in different ways as training AI models
to reproduce quantum mechanics energies from atomic coordi-
nates so the calculation time is close to molecular mechanics
models with the accuracy of quantum mechanics models [21].
AI in the pharma industry is becoming an essential part of the
drug discovery pipeline, therefore, different AI companies are
using AI-based tools for finding a potential treatment for COVID-
19. These companies concentrate on repurposing existing drugs
or designing new drugs. For instance, Benevolent AI company,
located in the UK, got the Food and Drug Administration (FDA)
approval for the use of their proposed Baricitinib drug in com-
bination with Remdesivir where recovery rate increased for the
hospitalized COVID-19 patients [22].

On the other hand, computer-aided drug discovery (CADD)
methods have been used as efficient tools to support drug dis-
covery. These tools rely mainly on structural biological informa-
tion and act in different phases of the drug discovery process.
CADD methods are used to reduce the cost and time of tradi-
tional high-throughput screening (HTS) where a large number of
compounds are tested for a specific activity in the wet lab. CADD
methods are categorized into two main subcategories: structure-
based and ligand-based. In SBDD, the 3D structure of the target
should be available by either experimental or modeling meth-
ods. Different techniques are used within the scope of SBDD

such as molecular docking, de novo ligand design, molecular
dynamics simulations and virtual high throughput screening
(VHTS). Ligand-based drug discovery (LBDD) is used when the
target structure is not attainable, but information about ligands
that bind to the target is provided. LBDD includes different
methods such as similarity searchers, QSAR and pharmacophore
modeling [23].

Drug Repurposing is performed with the same techniques
used for drug discovery but considering fewer drugs based on
the application and desired results. Drug repurposing efforts
focus only on approved or previously tested compound libraries
supported by previous knowledge about their properties includ-
ing safety. Drug repurposing has many advantages over drug
discovery as around 90% of drugs that get to clinical tests fail
to satisfy the FDA approval measures. Repurposing of approved
drugs can help to save the most portion of costs and time spent
for de novo drug design [24]. Thus, in a situation such as COVID-
19, the need is urgent to apply faster solutions with the least
available resources to rapidly confront the pandemic.

In this review, we explored the recent research efforts that
utilized AI or other computational methods for finding COVID-
19 treatments. We started by stating some of the recent reviews
in the field to give as a collective presentation of related studies.
After that, our review states the recent efforts in three directions:
omics studies, drug discovery and repurposing, and vaccine
development. In addition, we list the databases and resources
that contain COVID-19-related information and could be used
for constructing various AI- and computational-based tools.

Related reviews
Coronavirus has a vital impact on all areas of life: social, eco-
nomic and health. It prompted researchers from all fields to
address this pandemic according to their specializations. The
previous works can be roughly categorized into three main cate-
gories: pandemic management, image-based diagnosis and drug
discovery and repurposing. The general theme of pandemic
management research is the utilization of AI in tracking, screen-
ing and predicting future patients, and also the roles of new tech-
nologies such as drones, the Internet of things (IoT), Blockchain
and 5G in managing the impacts of the pandemic. Furthermore,
the researchers employed the advances achieved in medical
image processing using deep learning to analyze chest x-ray
(CXR), computed tomography (CT) and positron emission tomog-
raphy (PET) images for COVID-19 diagnosis. The most promising
direction in the fight against COVID-19 is the utilization of AI in
drug discovery and repurposing. Many studies have been carried
out to find a new drug or repurpose already existed one for
COVID-19 treatment. Table 1 summarizes the previous reviews
in these three categories.

SARS-CoV-2
COVID-19 disease is caused by the SARS-CoV-2 virus which is
a member of the Covs family. It is characterized as pathogenic
enveloped RNA genome viruses. SARS-CoV-2 was found to be
more pathogenic than its predecessors in the same family:
SARS-CoV, 2002 and MERS-CoV, 2013. The virus spreads among
humans by direct or close contact. This spread is taking an
exponential manner as it has a person-to-person spread factor
(R0) of 2.6. The understanding of the virus mechanism of
progress and pathogenesis is substantial for devising possible
treatments [51].
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Table 1. The previous reviews of computational methods for COVID-19

Category Focus

Managing the pandemic • The role of AI-based application in managing the pandemic [25–30].
• The role of drones, IoT, AI, Blockchain,robotics and 5G in managing the impacts of pandemic [31–33].
• AI and mathematical modeling for tracking, screening and forecasting [34–38]

Image-based diagnosis • Deep learning for different image modality assessment (CXR, CT and PET) [39–42]
• Data acquisition and segmentation [43]

Drug discovery, repurposing and
vaccine development

• Therapeutic candidate using deep learning [44–49]

• Drug repurposing using deep learning [49, 50]

The length of the SARS-CoV-2 genome size is 30 kb [52].
The Sequencing of the SARS-CoV-2 genome showed about 80%
identity with SARS-CoV, and 50% identity with MERS-CoV [53].
Most portion of its genome encodes 16 nonstructural proteins
(NSP), while the remaining parts encode four structural proteins
(SP) in addition to six or seven accessory proteins [52]. The four
structural proteins are spike, envelope, membrane and nucleo-
capsid proteins, denoted as S, E, M and N, respectively [53]. The
viral spike (S) protein has characteristics specific to the virus and
distinctive importance because it is responsible for enabling the
attachment and entry of the virus into the host cells. This role
makes it a major factor in the high pathogenic level of SARS-CoV-
2 [49, 54]. The main subunit in the spike protein (S1) contains a
receptor-binding domain (RBD). The RBD domain works as the
mediator for attaching the spike protein to the host receptor
angiotensin-converting enzyme 2 (ACE2). The crystal structure
of the RBD-ACE2 complex was determined by [55]. In addition
to the ACE2, the transmembrane protease serine 2 (TMPRSS2) is
another host protein that helps the entry of the virus into the
cell at the membrane surface. After the viral genome is released
into the cell cytosol, it is translated into various viral proteins
that work with some other host elements to facilitate the particle
formation and replication of the virus [53]. The roles of ACE2 and
TMPRSS2 in viral attachment and entry to the cell made them
potential COVID-19 therapeutic targets [56]. However, ACE2 was
found in other organs such as the heart and kidney [57]. Thus, it
is not preferred as a target because it could lead to undesirable
side effects if inhibited [54]. The 3CL protease (MPro), NSP, was
identified as the main protease with an important role in the
virus replication process. MPro was considered as a potential drug
target for antiviral drugs in several studies [58].

Omics data analysis
Omics studies such as genomics, epigenomics, transcriptomics,
proteomics and metabolomics are key resources for understand-
ing COVID-19. They help in understanding the origin of the
virus. In addition, they help in predicting the 3D structure of
the proteins of the virus, identifying the sequence of the virus
and its mutational variants. Omics data could be processed
individually or integrated using different computational- and
AI-based tools for providing several biological insights such as
origin, genetics variants, protein structures and identification of
SARS-CoV-2 sequence. These biological insights are essential for
drug discovery, repurposing and vaccine development. A broad
overview of omics data analysis workflow is shown in Figure 1.

It is essential to understand the evolutionary origin of
SARS-CoV-2 to identify its single nucleotide polymorphisms
(SNP) [67, 68]. This process is carried out using phylogeny
and mutant variation analysis. Phylogenetic trees mainly

depend on sequence alignment and many tools have been
utilized for the alignment of the SARS-CoV-2 genome [69–71].
Conversely, alignment-free tools compare the sequences using
features derived from these sequences [72]. Randhawa et al.
[73] combined digital signal processing method with supervised
machine learning for taxonomic classification of genomic
sequences by linking each genomic sequence to discrete values
representing its genomic signals. They tested different machine
learning methods to detect SARS-CoV-2 and identify its origin.

Understanding the mutant variants in SARS-CoV-2 is essen-
tial for vaccine development. Islam et al. reported significant
variants [74] based on Genome-wide analysis of SARS-CoV-2.
Recently, Hie et al. developed a natural language processing
(NLP)-based model to identify the mutations that could affect
the immune system of already infected or previously vaccinated
people [75].

Furthermore, understanding the functions of all parts of
the SARS-CoV-2 genome is an essential step in our battle
against the virus. Therefore, various computational tools worked
in this direction. Lopez-Rincon et al. [61] used convolutional
neural networks (CNN) for identifying representative genomic
sequences in SARS-CoV-2. They trained the model on 553
sequences extracted from the National Genomics Data Center
repository to separate the genome of the coronavirus family
from other different virus strains with an accuracy of 98.73%.
Then, they analyzed the trained model to find the sequences
that the model used to identify SARS-CoV-2. Whata et al. [62]
developed a hybrid CNN-BiLSTM model for classifying SARS CoV-
2 among Covs and then used the trained model for discovering
regulatory motifs in the SARS CoV-2 genome. Arslan et al.
[63] proposed a K-nearest neighbor (KNN) integrated with CpG
features for identifying the SARS-CoV-2 genome. Naeem et al.
[76] proposed an automated diagnostic system to distinguish
between the SARS-CoV, MERS-CoV and SARS-CoV-2 using their
genomic sequences. They extracted the features using discrete
cosine transform (DCT), discrete Fourier transform (DFT) and
seven-moment invariants. These features were passed to two
classifiers namely Cascade-forward backpropagation network
and KNN.

Another important topic in understanding COVID-19 is pro-
tein structure prediction taking into consideration that non-
synonymous mutations can alter the function and the struc-
ture of the resulting protein [77]. Protein structure identification
using welt ab experiments is expensive and time-consuming.
Therefore, computational tools are alternative methods for pre-
dicting the 3D structures of SARS-CoV-2 proteins. Deep learning-
based tools such as AlphaFold [64] and trRosetta [65] have been
used for predicting 3D structures of SARS-CoV-2 proteins. In
addition, existing computational structure and homology mod-
eling tools have been used for the same purpose such as PyMOL
[78], SWISS-MODEL [79], COMPOSER [80] and ITasser [81].
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Figure 1. Drug discovery and repurposing using Omics data analysis: (A) the host genome and the virus genome are sequenced and assembled. (B) Various Omics

data analysis is performed and AI- and computational-based tools are utilized for extracting different biological insights such as the origin of the virus, the functional

variants, virus detection and 3D structure prediction (C). These information are fed into another AI- and computational-based tools in combination with FDA-approved

drugs and bioactive molecules datasets for new drug discovery, repurposing and vaccine development (D).

Metabolomics and transcriptomics data analysis have been
adopted to provide additional therapeutic strategies for COVID-
19 treatment. Transcriptomics data analysis studies the role
of a set of genes in different functional pathways and organs
on COVID-19 disease. Various studies have been carried out
based on the available transcriptomics data such as [82–84].
Loganathan et al. [85] carried out differential expressed gene

analysis of the SARS-CoV-2 and other respiratory infection
viruses and produced dysregulated genes in disease conditions.
This study identified 31 upregulated host factors including eight
pro-viral factors in SARS-CoV-2. Using Connectivity Map-based,
they identified repurposed drugs for SARS-CoV-2 infection
treatment. More specifically, they suggested that the inhibition
of PTGS2 can be considered for treating viral infection and
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Table 2. Summary of the AI-based methods in omics data analysis

Task Method Description

Origin and mutant variation analysis Machine learning integrated with digital
signal processing method [59] [60]

- Taxonomic classification of genomic sequences.
- The origin of the SARS CoV-2.

Natural Language processing (NLP)
models

- Escape mutation in SARS-CoV-2

Identification Convolution neural network [61] - Identifying the genome of the coronavirus
family with an accuracy of 98.73%. - Designing a
specific primer for the identification of
SARS-CoV-2

hybrid CNN-BiLSTM [62] - Classifying SARS CoV-2 among Coronaviruses -
Discovering regulatory motifs in the SARS
CoV-2 genome

K-nearest neighbor (KNN) [63] - Using CpG feature with KNN for identifying
SARS CoV-2

Cascade-forward backpropagation
network and KNN.

- Distinguish Coronaviruses using genomics
sequence only

Protein structure prediction Convolution neural network, AlphaFold
[64]

- Predicting the distances between pairs of
residues instead of contact information

Convolution neural network,trRosetta
[65]

- Predicting inter-residue orientations and
distances

Metabolomics and transcriptomics Random Forest [66] - Identified 7 metabolites and 22 proteins related
to SARS-CoV-2 infection.

therefore they proposed six approved PTGS2 inhibitors that
could be repositioned for treatment of SARS-CoV-2 infection.
Jia et al. [86] performed transcriptomics differential expression
analysis for healthy and COVID-19 groups. They found that
lysosome and endocytosis pathways participate in the disease
and they are parts of the disease and disruption of the gene
regulation involved in neutrophil degranulation. Then, they
used co-expression drug repositioning analysis and reported
Saquinavir and Ribavirin antiviral drugs and other candidate
drugs. The study of Gordon et al. [87] investigated the map of
PPIs for the 26 of the SARS-CoV 2 viral proteins with the human
host cell proteins using mass spectrometry. They identified 332
PPIs of which 66 human proteins are targeted by 69 compounds
divided as FDA-approved or undergoing clinical tests. The viral
assays screening showed a subset of these compounds that
can be studied in more detail as potential therapies for COVID-
19. They used a variety of tools and servers during the study
to perform the required tasks. This included annotation and
codon optimization of SARS-Cov 2 genome, tools to predict
transmembrane or hydrophobic regions and signal peptides
(TMHMM Server v.2.0 [88], SignalP v.5.0 [89]), PPI scoring tools
(SAINTexpress (v.3.6.3) [90] and MiST [91]), secondary structure
prediction (JPRED) [92], sequence alignment (Clustal Omega) [93],
cheminformatics analyses and molecular docking (DOCK3.7)
[94].

Various metabolic studies have been carried out for a better
understanding of SARS-CoV-2 infection [84, 95–99]. The study by
Shen et al. [66] reported seven metabolites and 22 proteins by
analyzing metabolomic and proteomic data from 13 server and
18 non-server patients using random forest. Table 2 summarize
AI-based tools in omics data analysis.

Drug discovery
The typical process of a new drug discovery takes 13 years and
costs 1.3 billion USD on average [112]. However, the COVID-
19 pandemic requires rapid steps toward providing new ther-
apeutics to alleviate its consequences on the economy, health

and society. Therefore, using advanced experimental technolo-
gies with AI is projected to provide cheaper and quicker new
therapeutics for COVID-19 and other complex diseases. Drug
discovery pipeline consists of broadly four main steps: target
identification, potential compound screening followed by lead
optimization, animal trials and clinical trials. In the first step,
the disease of interest is studied comprehensively and the target
protein is identified and validated. In the second step, meth-
ods such as virtual screening, HTS and combinatorial chem-
istry screen molecular libraries for hit identification. Then, the
selected hit molecule goes into an interactive process for func-
tional properties improvement. In the third step, animal models
are used for performing in vivo studies including pharmacoki-
netics and toxicity. If the drug candidate passed the first three
steps successfully, clinical tests start on patients in the last step.
Here, the candidate drug should successfully pass three phases
to get the final approval by agencies such as FDA. In the first
phase, a small number of people test the drug safety, while in
the second phase, the drug efficacy is carried out on a small
number of patients. The last phase tests the drug on a large num-
ber of patients. The long and complex drug discovery process
should be shortened in general and especially for the COVID-
19 epidemic. Therefore, AI-based methods in combination with
conventional methods can be a boon for reducing the needed
time and cost for COVID-19 treatment and they can be used in
almost all steps of the drug discovery pipeline. In addition, drug
repurposing is a fast alternative in which already approved drugs
can be reused for COVID-19 treatment. The workflow of drug
repurposing is shown in Figure 2. In this section, we introduce
the recent computational tools for COVID-19 drug discovery and
repurposing.

Nguyen et al. [100] proposed a mathematical deep learning
model for generating a low-dimensional representation of high-
dimensional chemical/physical interactions. They integrated
this representation into different deep learning models such as
CNN and generative adversarial networks (GAN) for predicting
the pose and energy of the interaction. They applied this model
for finding inhibitors for 3CLpro of SARS-CoV-2 [113].
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Figure 2. Drug repurposing workflow using AI- and computational-based tools. In AI-based tools, a deep learning model is trained on experimentally available protein–

drug interaction dataset. Then, the trained model is used for finding the potential drugs that could bind with the target SARS-Cov-2 protein or host protein. The

standard computational tools have two steps: Docking and MD simulation. Docking is used for performing virtual screening and selecting the compounds that could

bind a target protein. MD simulation is used to study the complex stability. The final selected drugs are ranked based on the binding affinity scores or docking scores.

Beck et al. [101] searched for commercially available antiviral
drugs that interact with SARS-CoV-2 proteins. They targeted
different proteins of SARS-CoV-2. They used the pre-trained
Molecule transformer–drug target interaction (MT-DTI) [114] for
predicting binding affinity. MT-DTI relies only on the sequence
information of the target protein and the simplified molecular-
input line-entry system (SMILE) of the drugs. The reported
results were verified using AutoDock Vina. For instance, they
reported that Atazanavir, a human immunodeficiency virus
(HIV) treatment, is the best inhibitor for the 3C-like proteinase
of SARS-CoV-2.

Pham et al. [102] designed DeepCE, a publically available
neural network model to detect high-dimensional associations
and nonlinear relationships between biological features to pre-
dict gene expression profiles for new chemical compounds.
The features of chemical substructures were extracted using
a graph convolutional neural network (GCNN), while the asso-
ciations between genes and genes to chemical substructures
were detected by attention mechanism. The gene expression
values were predicted using a multilayer feed-forward neural
network. The model was applied for COVID-19 clinical pheno-
types. They screened the compounds in DrugBank [115] to assign
higher priority for promising compounds. The results obtained
confirm the available clinical information. After training the
DeepCE model on gene expression profiles, they used it to pre-
dict gene expression profiles for the drugs in the Drugbank
(11 179 drugs). Also, they used SARS-COV-2 gene expression
datasets from National Genomics Data Center (NGDC) [116] and
the National Center for Biotechnology Information (NCBI) to
calculate differential gene expressions for patients. The model
predicted 10 and 15 repurposed drugs for population and indi-
vidual analyses, respectively, where most of the predictions have
previous antiviral activity.

The work of Zhang et al. [103] proposed a novel method
for COVID-19 drug repurposing based on literature knowledge.

They used the knowledge from SemMedDB [117], which contains
semantic predications for the PubMed entries. They used the
extracted biomedical knowledge and the COVID-19 literature to
construct a knowledge graph. Then, the knowledge graph com-
pletion method supported by different neural network-based
algorithms was applied to obtain repurposed drugs for COVID-
19. This approach predicted drugs that have been already tested
for COVID-19 in addition to new suggested drugs.

The study by Auwul et al. [104] identified the major genes
and targets involved in the COVID-19 activity. A bioinformatics
and machine learning workflow was suggested to achieve their
goal. The flow included RNA-sequencing datasets for analyz-
ing gene expression weights and constructing co-expression
networks. The key gene modules were selected and analyzed
with dedicated tools including DAVID tools [118]. A total of
10 hub genes were determined according to their membership
in the modules by applying statistical methods and Protein–
Protein Interactions (PPI ) network analysis. The validation of
hub gene signatures was performed using machine learning
methods including SVM and RF. The evaluation was done using
common performance measures such as ROC-AUC and accuracy.
Potential regulators of the hub genes were identified from ana-
lyzing dedicated databases such as JASPAR [119], Tarbase [120]
and mirTarbase [121]. Five top repurposed drugs were deter-
mined for the important genes by studying gene–drug relations
and searching the LINCS-L1000 data [122].

Delijewski and Haneczok [105] performed drug repurposing
for antiviral FDA-approved drugs from the DrugBank. A dataset
of 290 000 inactive and 405 active compounds was used to train
a machine learning (ML) model to predict active inhibitors for
the SARS-CoV-2 3CLpro protein. The active compounds used for
training the model included active inhibitors against SARS-CoV
3CLpro that have 96% sequence identity to SARS-CoV-2 3CLpro.
They calculated MACCS fingerprints for the drugs in the dataset
using RDKit library [123]. The used XGBoost for prediction. The
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drug zafirlukast was selected as the best potential repurposed
drug in terms of prediction score and median lethal dose.

Kim et al. [106] applied two different bioinformatics tech-
niques to suggest potential COVID-19 therapies from the FDA-
approved drugs. The first techniques aimed to find inhibitors
that can act as blockers for the virus entry to the cells by
targeting ACE2 and TMPRSS2. The prediction of the inhibitors
was done by a deep learning-based QSAR model, Fluency. The
model was trained on data from ChEMBL [124] and then used
to predict the binding score between the input proteins and
compounds. The second technique aimed to find drugs that
can reduce the expression of virus-induced genes by utilizing
the Disease Cancelling Technology (DCT) platform. The results
of the first technique identified a set of inhibitors, including
antiviral agents, for further experimental assessment as beta-
lactam antibiotic, Fosamprenavir, glutathione and others. The
second technique suggested using Vitamin E, ruxolitinib and
glutamine that emphasized the selection of glutathione by the
first technique.

Mall et al. [107] proposed a machine learning model that uses
the induced vector embeddings of deep learning to represent
features of compounds and viral proteins. The model was used
to predict the activity of compounds against viral proteins. The
selected compounds were ranked by consensus framework. The
proposed framework could predict the activity of compounds
against viral proteins with high accuracy (Pearson Correlation
0.917 and mean R2 of 0,84).

Ton et al. [108] used a deep learning-based platform, Deep
Docking (DD), to quickly predict the docking score of 1.3 billion
compounds from ZINC 15 library [125] against the SARS-CoV-2
MPro protein. The DD platform rapidly predicts the docking score
estimated by any docking program by using docking scores in
different databases to train QSAR models. This method enables
a fast screening of a large number of compounds. The top
1000 compounds were identified and made available for further
scientific inspections.

A broad computational docking study was performed
by Berber and Doluca [109] as they obtained 7900 drugs
that are FDA-approved or under clinical investigations. The
drugs were docked against Dihydroorotate dehydrogenase
(DHODH) which is a suggested target for COVID-19 because it
is involved in virus replication. A total of 20 DHODH structures
were obtained from Protein Databank (PDB) [126] for the
docking which was performed with AutoDock Vina [127].
The results selected 28 FDA-approved drugs in addition to
79 of the clinically investigated drugs for further analysis.
The interactions of the drugs with the targets were explored
using AutoDock4 [128] and DS visualizer. The 28 FDA-approved
drugs were suggested for a more detailed experimental
examination. They included nine serotonin, dopamine recep-
tor antagonists that are used for treating depression and
schizophrenia.

In a molecular docking study, ELfiky et al. [110] suggested a
list of compounds as inhibitors for the SARS-CoV-2 RNA depen-
dent RNA polymerase (RdRp). A homology model was built for
the SARS-CoV-2 RdRp using the Swiss Model web server [129].
The docking was performed using AutoDock vina [127] consid-
ering the built model for SARS-CoV-2 RdRp as the target. The set
of tested compounds included 24 approved or clinically inves-
tigated drugs in addition to physiological nucleotides. Most of
the compounds used in the study showed activity against RdRp
from different viruses. The docking results were examined using
the Protein–Ligand Interaction Profiler (PLIP) webserver [130].
The study suggested a list of compounds including Ribavirin,

Remdesivir, Setrobuvir, IDX-18 and others as potential inhibitors
for the SARS-CoV-2 RdRp.

Wang et al. [111] performed a molecular docking study on the
SARS-CoV-2 main protease after its 3D structure was discovered
in complex with ligand N3 (PDB ID: 6LU7 ) [131]. Approved
and clinical trials drugs were screened against the target using
Glide [132]. The top docked candidates were then studied using
molecular dynamics simulations. The results showed promising
outcomes with a list of several potential inhibitors. The best
results were obtained with carfilzomib and eravacycline. All
methods reviewed in this paper are summarized in Table 3.

The methods in the reviewed studies can be broadly divided
into learning-based and structure-based. The main actor in
selecting the technique to use is the type of available data
for the target problem. Learning-based methods mostly ignore
the important information contained in the macromolecular
structures. Additionally, the number of samples used for
training the learning-based models should be of proper size and
represent all possible varieties, which is not always available.
Another important requirement for such methods is the
verification of data quality and integrity. These mentioned
factors affect the robustness of the results obtained by different
methods. In addition, the difference in data formats needed by
different methods hinders the use of several methods on the
same data. Though there are promising results for AI-based
methods applied in COVID-19 treatments, the impact of AI-
based techniques is not yet highly observed because there is
a shortage of available data. Suitable strategies are required to
consider privacy and public health issues when providing data
for AI-based methods to find COVID-19 treatments [133, 134].
The data problem also tackles structural-based methods such as
docking and virtual screening. A robust result requires a verified
high-quality 3D structure of the target protein(s). To obtain these
structures, crystallization and other methods should be applied
which is expected to take some time to be available for more
COVID-19 targets. Other options such as homology modeling
or using similar proteins could give initial indications as a
starting point. An important issue that should be observed when
studying a host target(s) is the possible side effects that could
occur [135–137]. Generally, robust outcomes of AI-based and
computational-based strategies depend mainly on the verified
data. It should also use efficient and accessible tools to produce
predictions. Validations of the predictions should be possible
with the knowledge of experts to explain the results and judge
their robustness and applicability [138].

AI and computational tools were used extensively in the race
for finding COVID-19 treatments. In the course of drug design
or repurposing, there are few FDA approved and a variety of
suggested lists for further clinical trials. Among these sugges-
tions is Remedisivir which was approved by FDA for treating
COVID-19 hospitalized cases. Remedisivir was suggested by dif-
ferent computational-based methods as it got the approval of
combined use with Baricitinib that was proposed by Benevolent
AI company [22] and it was also suggested by Elfilky et al.
[110]. Additional efforts by companies that use AI in developing
COVID-19 treatments resulted in a set of drugs that are being
validated or clinically tested. Innoplexus: 3 drug cobinations,
Deargen: atazanavir and Gero: Nine drugs including niclosamide
and nitazoxanide are examples of such efforts[133].

Vaccine development
The immune system in humans fights the virus when it enters
the body. One type of cells in the immune system is the white
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Table 3. The summary of the reviewed drug discovery methods

Study and Method Summary Results

Mathematical deep learning
model [100]

Search for Inhibitors for Viral Proteins
3CLpro of SARS-CoV-2

Identified fifteen potential inhibitors
ranked based on the predicted binding
energy. The top predicted inhibitors were
Bortezomib, Flurazepam, Ponatinib and
Sorafenib.

Molecule transformer–drug
target interaction (MT-DTI) [101]

Repurposing of commercially available
antiviral drugs SARS-CoV-2 proteins

Reported Atazanavir as the best inhibitor
for the 3C-like proteinase of SARS-CoV-2.

DeepCE, Graph neural network
and multihead attention
mechanism [102]

Predict associations between gene
expressions and chemical compounds. It
was applied to repurpose drugs for
SARS-CoV-2 proteins

The model predicted 10 and 15
repurposed drugs for population and
individual analyses, respectively. Most of
them have previous antiviral activity.

Neural knowledge graph
completion [103]

Building a biomedical knowledge graph
of COVID-19 and PubMed articles for
COVID-19 drug repurposing

A list of predicted drugs that have been
already tested or newly suggested as
treatments for COVID-19 based on
literature.

Bioinformatics tools and
machine learning (RF, SVM) [104]

Identify genes and targets involved in the
activity of COVID-19 for drug repurposing

Identified the major genes and targets
involved in the COVID-19 activity. Then,
five top repurposed drugs were
determined for the important genes

Machine Learning XGBoost
model [105]

Predict active compounds against
SARS-CoV-2 proteins 3CLpro protein
from FDA-approved antiviral drugs

The drug zafirlukast was selected as the
best potential repurposed drug in terms
of prediction score and median lethal
dose.

Deep learning-based QSAR
model [106]

Predict host ACE2 and TMPRSS2
inhibitors and identify compounds that
reduce virus induced genes.

Antiviral agents were suggested for
further experimental assessment such as
beta-lactam antibiotic, Fosamprenavir,
glutathione, and others. Additionally,
Vitamin E, ruxolitinib, and glutamine
were suggested.

Deep learning model for protein
and compound embedding and
machine and deep learning for
binding prediction [107]

Identified a list of 47 COVID-19 inhibitors
such as Rifabutin

The proposed framework could predict
the activity of compounds against viral
proteins with high accuracy (Pearson
Correlation 0.917 and mean R2 of 0,84).

Deep Docking (DD) and Docking
tools such as Glide [108]

Rapid screening of compound libraries
for SARS-CoV-2 MPro protein

The top 1000 compounds were identified
and made available for further scientific
inspections.

Docking using AutoDock Vina
[109]

Docking of FDA-approved, or clinically
tested drugs against host protein DHODH
as COVID-19 target.

The results selected 28 FDA-approved
drugs in addition to 79 of the clinically
investigated drugs for further analysis.
The 28 FDA-approved drugs included
nine serotonin, dopamine receptor
antagonists that are used for treating
depression and schizophrenia.

Docking using AutoDock Vina
[110]

Docking of previous antivirals against
homology model of SARS-CoV-2 protein
RdRp

The study suggested a list of compounds
including Ribavirin, Remdesivir,
Setrobuvir, IDX-18, and others as
potential inhibitors for the SARS-CoV-2
RdRp.

Docking using Glide [111] Docking and MD simulations for
approved and clinically tested drugs to
inhibit SARSCoV-2 main protease

The results showed promising outcomes
with a list of several potential inhibitors.
The best results were obtained with
carfilzomib and eravacycline.

blood cells which work to fight virus infection in different ways
by macrophages, B-cells or T-cells. The immune system takes
time after infection, days or weeks, to learn how to fight the
virus. Then, the immune system memorizes how to fight the
virus infection quickly if it happened again. A COVID-19 vac-
cine does the teaching task for the immune system to identify
the SARS-CoV-2 virus if the infection happened, and hence it
responds immediately by fighting the virus. To save millions

of people’s lives during the pandemic, there is an urgent need
to design safe vaccines for COVID-19. As of 29 June 2021, there
are 127 vaccine candidates, 367 trails and 19 approved vaccines.
There are 35 vaccines in Phase 1, 50 vaccines in Phase 2 and
37 vaccines in Phase 3. Out of 19 approved vaccines, there are
eight inactivated vaccines, two protein subunit vaccines, six
non-replicating viral vector vaccines and three RNA vaccines
(https://covid19.trackvaccines.org/).
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Here, we review the latest computational methods applied for
vaccine development. Magar et al. [139] utilized the proteomics
sequences of the SAR-CoV-2, to find antibody sequences that can
neutralize the virus. A variety of antibody sequences for different
viruses were collected in a dataset, (VirusNet) with their patient
and IC50 data. Various machine and deep learning models were
tested on the collected data and the best performing model was
selected. The selected model was then used to find potential
antibodies from a set created based on the SARS 2006 antibody
scaffold [140]. Candidates selected by the model were then tested
for structural stability using MD simulations, which showed a list
of nine suggested SARS-CoV-2 neutralizing antibodies.

In the study of Ong et al. [141], they surveyed the results
of vaccination clinical trials that were performed against SARS
and MERS viruses. The efforts for vaccination focused on tar-
geting the whole viruses, or any of the spike, nuckeocapsid or
membrane proteins. The results showed concerns about safety
because of the lack of full protection. They applied a new tech-
nique that was developed based on machine learning for pre-
dicting potential vaccines for COVID-19, Vaxign-ML. The analysis
results showed that some viral proteins have a level of conserva-
tion among SARS-CoV-2, SARS-CoV and MERS-CoV. The level of
protection of the studied proteins was estimated by the Vaxign-
ML. The study suggested a combination vaccine for structural
proteins (sp), nonstructural proteins (nsp) and spike protein (S)
considering nsp3, S, nsp8 as promising vaccine targets.

The study of Yang et al. [142] designed an approach based
on deep learning for multi-epitope vaccine design, named Deep-
VacPred. The vaccine prediction is based on the sequence of the
SARS-CoV-2 spike protein that resulted in suggesting 26 vaccine
subunits. Additional in silico methods were used to examine
the suggested vaccines, where 11 of them were selected for
designing a multi-epitope vaccine. The designed vaccine was
then tested for different quality aspects using bioinformatics
methods. The coverage, toxicity, secondary structures and other
properties were assessed showing good qualities. The 3D struc-
ture was predicted by using computational tools. Finally, the
ability of the designed vaccine was tested against the recent
SARS-CoV-2 mutations. Data and several tools used in the study
were from The Immune Epitope Database (IEDB) [143].

Data resources
Computational methods rely on the availability of high-quality
data to analyze and extract hidden patterns that provide the
biologist with clear insights into the problem of interest. Since
the pandemic, researchers produced big data sources and used
them in different ways to understand and fight COVID-19. In
general, they relied on the already established data sources
for developing various computational models such as UniProt,
Protein Data Bank (PDB), GenBank, LINCS L1000 database and
Genotype-Tissue Expression (GTEx). Here, we focus on the recent
studies and websites that provide specific data resources for
COVID-19.

Chen et al. [144] curated an up-to-date database of the COVID-
19-related information published in PubMed. It is named Lit-
Covid and accessed at https://www.ncbi.nlm.nih.gov/research/
coronavirus/.This dataset is updated daily and categorized into
general information, mechanism of COVID-19 disease, diagno-
sis, treatment, prevention, case report and forecasting. Ray-
bould et al. [145] constructed the CoV-AbDab dataset for the
known coronavirus-binding antibody. This dataset collects data
from patented/published nanobodies and antibodies that bind
to betacoronavirus. Korn et al. [146] constructed the COVID-KOP

dataset for integrating biomedical knowledge graphs of Rea-
soning Over Biomedical Objects linked in Knowledge Oriented
Pathways (ROBOKOP) with biomedical literature in the CORD-
19 collection (https://allenai.org/data/cord-19). Gordon et al. [87]
reported 332 protein–protein interactions between human pro-
teins and SARS-CoV-2. Further, they reported that 69 compounds
(28 preclinical, 12 in clinical trials and 28 approved by the United
States FDA) target 66 host factors or proteins.

Messina et al. [147] proposed a network-based model for
understanding viral-host interactome. They reported that host
interactome highlights innate immunity pathway components
such as chemokines, cytokines, Toll-Like receptors. Ostaszewski
et al. [148] provided a COVID-19 disease map by constructing
a repository of SARS-CoV-2 virus–host interaction mechanisms.
Martin et al. [149] constructed a dataset of potential drugs for
COVID-19. They provide up-to-date information on in vivo, in
vitro, clinical trials and computational predictions https://cordi
te.mathematik.uni-marburg.de/.

In addition, different websites provide COVID-19-related
data. National Institute of Health (NIH) (https://datascience.ni
h.gov/COVID-19-open-access-resources) provides a big source
of COVID-19 data categorized in 13 groups: bioactivity, case
studies, chemical structure data, clinical studies, dashboards
and visualization tools, digital images, epidemiology, genomics,
healthcare resources, literature, participant-level clinical data,
RNA-seq and expression counts and social sciences. The COVID-
19 browser provides analysis of published drug researches
related to COVID-19 (https://covidtib.c19hcc.org). COVID-19 data
portal (https://www.covid19dataportal.org/) provides updated
information of the COVID-19 such as viral sequences, host
sequences, proteins, expression, images, biochemistry and
literature. OverCOVID website (http://bis.zju.edu.cn/overco
vid/) provides accumulated information about covid-19 for
data scientists and bioinformaticians such as biological data,
epidemiological data and databases. Nextstrain [150] website
(https://nextstrain.org/) provides an open-source real-time
tracker of pathogen evolution for different viruses including
SARS-CoV-2.

The data resource in this review are summarized in Table 4.

Discussion
The irreversible effect of the COVID-19 pandemic shed light on
the possible role of AI- and computational-based tools to accel-
erate therapeutic solutions. Thus, pharmaceutical companies
equipped their arsenal with AI algorithms for accelerating drug
discovery and repurposing. Successful stories started to emerge
as Baricitinib that was proposed by Benevolent AI company. This
success demonstrated that the failure rate of drug repurposing
could be reduced significantly by robust in vivo and in vitro model
development.

Different methods could be applied depending on the avail-
ability of data and knowledge that becomes clear day by day.
The scarcity of information at the beginning of the pandemic
caused the use of less accurate or multi-level prediction meth-
ods. When more knowledge becomes available, such as genomic
and proteomic sequences, structural data and experimental or
clinical results, the use of more accurate methods turns to be
possible. The availability of protein structures allowed using
computational docking and virtual screening for drug repurpos-
ing against COVID-19 or host cell proteins. While AI methods
could also support structure-based methods, they can do the
task by utilizing clinical and experimental results when they
are available. AI and machine learning could also infer hidden
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Table 4. Summary of the reviewed COVID-19 data sources

Data source Summary Link

LitCovid collects and classifies PubMed articles of
COVID-19

https://www.ncbi.nlm.nih.gov/research/
coronavirus/

CoV-AbDab Coronavirus-binding antibody http://opig.stats.ox.ac.uk/webapps/coro
navirus

COVID-KOP Integrates Reasoning Over Biomedical
Objects (ROBOKOP) with biomedical
literature in the CORD-19 collection

https://covidkop.renci.org/

National Institute of Health (NIH) Computational approaches and open
access data resources for COVID-19

https://datascience.nih.gov/COVID-19-o
pen-access-resources

COVID-19 browser Analysis of published drug researches
related to COVID-19

https://covidtib.c19hcc.org

COVID-19 data portal Collects data generated from SARS-CoV-2
experiments https://www.covid19datapo
rtal.org/

OverCOVID Bioinformatics resources for COVID-19
related researches

http://bis.zju.edu.cn/overcovid/

Nextstrain Tracking of of pathogen evolution of
SARS-CoV-2

https://nextstrain.org/

patterns for building accurate prediction and therapeutic models
from the raw genomic and proteomic sequences. This diversity
of the applicability of computational and AI-based methods
made them usable at many stages in the virus tackling efforts
according to the types and sizes of available data. Our review
shows such diversity and broad applicability by describing sev-
eral research efforts that utilized different techniques. The over-
all idea gained from this review aims to help the integration
of efforts for faster production of a safe, wide spectrum, and
efficient COVID-19 treatment.

Bioinformatics tools have played important role in multi-
omics data analysis [151–154]. Multi-omics analysis using AI has
several challenges that need to be handled for accelerating the
understanding of COVID-19. For instance, multi-omics data are
heterogenous [155] because of using different normalization and
scaling methods such as the cases in the transcriptomics and
proteomics data. Also, sparse data could be generated from some
omics such as metabolomics [156]. Furthermore, outliers should
be detected and null values should be imputed [157] before the
integration of multi-omics data. Another challenge is a class
imbalance in the multi-omics dataset [158] because training
machine/deep learning model on imbalance dataset may overfit.
Therefore, various techniques could be used for dealing with
this issue such as collecting more data if possible, using nor-
malized metrics to measure the machine/deep learning perfor-
mance such as F1-Score [159], oversampling of underrepresented
class, undersampling or overrepresented class, or using methods
such as SMOTE [160] or ADASYN [161] for generating synthetic
samples of the underrepresented class. The curse of dimen-
sionality in most multi-omics datasets is another challenge
that should be handled by applying appropriate feature extrac-
tion and selection methods [162]. The storage and computation
cost in the case of applying machine/deep learning algorithms
on multi-omics data is an additional challenge that should be
taken into consideration [163]. The most challenging part in
applying AI algorithms on multi-omics data is selecting the
appropriate machine/deep learning algorithm. For that, many
reviews in literature analyzed the weaknesses and strengths of
different ML/DL algorithms using single- and multi-omics data
[164, 165]. To obtain a more robust testable hypothesis from
multi-omics analysis, a larger and broader COVID-19 patient

population should be considered. Multi-omics analyses help in
building COVID-19 knowledge base [166], understanding cellu-
lar hallmarks of severe COVID-19, making multi-omics COVID-
19 data more accessible and readier for data-driven biological
research [167–169].

Some challenges need to be tackled while using AI for drug
discovery and repurposing. Therefore, accurate measurements
should be implemented in order to accelerate the utilization
of AI-based models for COVID-19 or other pandemics. The
main challenge is biological interpretation. Biological systems
are composed of multiple levels ranging from DNA sequences
to organisms. Similarly, the drug discovery process involves
multiple levels of interactions between chemical compounds
and biological systems. Therefore, the developed AI models
should utilize information on the interactions between different
entities at different levels. Although the majority of reviewed
researches focused on drug repurposing, the development of
AI models for drug repurposing for COVID-19 is a challenging
task. In general, the repurposed drugs are originally optimized
for a certain target with a certain dose. Also, it is possible that
cellular or animal tests do not accurately reflect the virus’s host
environment in people. In vitro tests, for example, demonstrate
that hydroxychloroquine has anti-SARS-CoV-2 activity [170]. In
preclinical and clinical trials, however, hydroxychloroquine has
demonstrated little or no efficacy [171]. Therefore, the developed
AI tools should take into consideration these challenges. For
instance, the existence of diverse populations with varying
genetic origins may potentially influence clinical outcomes.
Thus, clinical trial success rates might be improved even further
using genotype drug repurposing [172]. The construction of
effective and reliable in vitro and in vivo AI-based models for
COVID-19 might minimize the failure rate of drug repurposing
between preclinical and clinical trials [173, 174]. Another
challenge in using AI for COVID-19 is data integration, sharing
and security. Data come from different sources and it is
important to construct a unified database. This guarantees
that the developed models can work in different settings.
Furthermore, data security and privacy should be addressed.
Questions such as what sort of data will be gathered, if the data
are essential, who will collect the data, how the data will be
kept, used and transferred, and what would be the rights of the
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person whose data are being collected should all be thoroughly
addressed.

COVID-19 pandemic has proven that the collaboration
between scientists from different disciplines and the sharing
of high-quality data are essentials for the fast response toward
fighting this pandemic. Data and tools availability are the
main essential step for any computational tool. Therefore, the
fast generation of data in standard forms is a crucial step for
fighting the pandemic. Also, the integration of the experimental
data from different laboratories is also important. Therefore,
there should be a unified pipeline for data collection and
integration. Further, the utilization of the available AI-based
software and computational tools in clinical trials is limited
during the pandemic. This requires developing more robust
tools that provide more accurate results. For example, the
need for developing tools that can predict binding affinity for
new drugs with different scaffolds from the training set is a
significant contribution. Further studies should concentrate
on designing more accurate AI-based models for predicting
the physical properties of a new drug molecule. Building these
models requires collecting more data that cover large chemical
space and taking into consideration subcellular compartments
[175] or the particular tissue of interest. AI-based models should
consider the identification of synergistic drug combinations as
this is more effective than concentrating on monotherapies [176,
177]. Also, the limited side effect data and annotations for drug
action targets should be explored using AI-based techniques.

Key Points
• We introduced a comprehensive review of the recent

computational tools proposed for COVID-19.
• We provided a checkpoint to link the efforts of the

researchers working on COVID-19 treatments by AI
and related methods.

• We analyzed the utilized approaches in Omics data
such as genomics, transcriptomics and proteomics.

• We discussed the employed approaches for drug dis-
covery, repurposing and vaccine development using
various AI- and computational-based tools.

• We summarized the latest data resources that help
data scientists in developing computational tools for
COVID-19.
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