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ABSTRACT

Recently, users and news followers across websites face many fabricated images. Moreover, it goes 
far beyond that to the point of defaming or imprisoning a person. Hence, image authentication has 
become a significant issue. One of the most common tampering techniques is copy-move. Keypoint-
based methods are considered as an effective method for detecting copy-move forgeries. In such 
methods, the feature extraction process is followed by applying a clustering technique to group spatially 
close keypoints. Most clustering techniques highly depend on the existence of a specific threshold 
to terminate the clustering. Determination of the most suitable threshold requires a huge amount of 
experiments. In this article, a copy-move forgery detection method is proposed. The proposed method 
is based on automatic estimation of the clustering threshold. The cutoff threshold of hierarchical 
clustering is estimated automatically based on clustering evaluation measures. Experimental results 
tested on various datasets show that the proposed method outperforms other relevant state-of-the-art 
methods.
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1. INTRODUCTION

Digital images are everywhere, and they have the power to do infinitely more than a document. In the 
latter half of the last two decades, the internet, mobile technology, and obsession of social media have 
highly affected and changed people’s lives (Katta & Patro, 2017; Mahajan et al., 2018; Muliawat et 
al., 2019). Recently, there is a rapid increase in images showing in the media as in social media and 
television that don’t seem to be all as they appear. Authenticity of digital images is a critical issue. 
Day by day, it becomes easy for anyone to manipulate images even without leaving any visible clues. 
Wide availability of powerful image processing software like Photoshop and Gimp makes it more 
challenging for digital image authentication.

Digital image forensics is the science of detecting tampered regions in images. Identifying the 
authenticity of digital images is very important in digital forensics. The purpose of digital image 
manipulation is to conceal or hide information for several intentions therefore change their meaning. 
Many areas have been affected by digital forensics. The impact of image manipulation in media, 
journalism, digital cinema, news and in politics to mislead the public opinion. It could also be used in 
law for miscarrying justice. Manipulated images also have been found in academic papers. In a survey 
by Tijdink (Tijdink et al., 2014), in the past three years, 15% of offenders are involved in scientific 
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misconduct such as fabricating, refutation or manipulating data. A study by (Farid, 2006) reported 
that in the Journal of Cell Biology about 20% of admitted manuscripts have at least one figure that 
must be restored due to unsuitable image manipulation, and about 1% are deceitful figures. These 
consequences make image authenticities less trustful.

Rapid growth of forged images and their influence in many areas have led to the development 
of tampering detection techniques. Tampering detection techniques fall under two categories: active 
authentication and passive authentication methods (Al-Qershi & Khoo, 2013) as shown in Figure 
1. Active authentication methods require some preprocessing on digital images like watermarking, 
or signatures. Digital watermarking conceals a watermark into the image at the capturing end and 
extracts it at the authentication end to examine whether the image has been tampered with (Al-Qershi 
& Khoo, 2013). Inserting the watermark either at the capturing time of the image using a specially 
equipped camera or later by an authorized person is the main drawback of watermarking (Qureshi & 
Deriche, 2015). Moreover, most of the cameras today are not equipped with a watermark embedding 
technique. In addition, the subsequent processing of the original image could degrade the image visual 
quality. Moreover, digital signature is similar to digital watermarking. At the image-capturing end, 
unique features are extracted from the image as a signature. At the authentication and detection end, 
the signature is regenerated using the same method and the authenticity of the image can be identified 
and verified through comparison. Digital signatures have the same drawbacks of digital watermarking.

On the other hand, Passive (blind) authentication methods authenticate images while not requiring 
any previous information of it. It relies on the traces left on the image during manipulation by 
various processing operations. Therefore, passive authentication methods are considered as the most 
common (Lin et al., 2018). Passive detection techniques can be classified to forgery-type dependent 
or forgery-type independent. Forgery-type independent techniques detect forgeries regardless of the 
type of the forgery. To detect general tampering, the independent techniques exploit three diverse 
types of artifacts: traces of re-sampling, compression and inconsistencies (Redi et al., 2011). The 
forgery-type dependent techniques are used for certain types of forgeries. Copy-move and splicing are 
examples of forgery-type dependent (see Figure 1). Such techniques depend on copying and pasting 
image regions either from the same image (copy-move), or from different images (splicing). Image 
splicing is created from at least two different images (Sharma & Ghanekar, 2019; Walia & Kumar, 
2018). An Example of image splicing is shown in Figure 2(d).

Copy-move or cloning is a technique of copying a region and pasting it in the same image. It 
contains at least two regions alike (see Figure 2(b)). Since the duplicated regions are from the same 
image, they inherit the same basic image properties such as color palette, illumination conditions and 
noise. Copy-move forgery is the most common type used for image manipulation due to its simplicity 
and effectiveness (Al-Qershi & Khoo, 2013; Bakiah et al., 2016). Although this technique is easy to 
implement, it is hard to detect. Often in practice, forgery is not just limited to copying and pasting the 
regions, some processing operations are applied to these regions. These operations can be classified 
to intermediate operations (geometric transformations) and post-processing operations. Intermediate 
operations are used to provide a spatial synchronization and homogeneity between the copied region 
and its neighbors (Al-Qershi & Khoo, 2013; Bakiah et al., 2016). Examples of intermediate operations 
are rotation and scaling. Post-processing operations are used to remove traces left from forgery and to 
make it unnoticeable. Additive noise, JPEG compression and blurring are examples of post-processing 
operation (Liu et al., 2010). Since all those operations make detecting copy-move forgery more 
challenging, numerous methods have been proposed for Copy-Move Forgery Detection (CMFD). 
Most of them can be classified either into block-based methods or keypoint-based methods (Bakiah et 
al., 2016). In block-based methods, the image is divided into overlapping or non-overlapping blocks 
of fixed size. On the other hand, keypoint-based methods calculate local interest points (keypoints) 
from the whole image without any subdivisions.

Generally, CMFD techniques follow a common pipeline as shown in Figure 3 (Christlein et 
al., 2012). Both block-based and keypoint-based methods follow the same pipeline steps except for 
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feature extraction. The first stage of CMFD pipeline is preprocessing. It is an optional stage and it 
depends on the technique used. It aims to improve the image data either by enhancing the image 
features or by removing some unwanted distortion. Converting RGB image to grayscale is one of 
the most used methods for pre-processing (Bakiah et al., 2016). After this conversion, features are 
extracted either from the divided blocks in block-based methods or for the keypoints then they are 
stored in a feature vector. In the matching stage, each feature vector is compared with each other to 
find similarities within the same image. In this stage once the matched blocks are detected, copy-move 
forgery manipulations are determined. The matching technique used depends on the extracted features 
of block-based or keypoint-based methods. In the filtering process, outliers and false matches are 
removed. Finally, the copy-move forgery detection result can be visualized to localize the tampered 
regions in the forged image. Visualization can be further refined by morphological operation such as 
filling the holes. There is always a motivation for presenting a copy-move detection technique with 
efficient complexity and robustness against image processing operations.

The rest of the paper is structured as follows. Section 2 introduces related work. Section 3 
explains our proposed method. The experimental results are given in section 4. Finally, section 5 
concludes the paper.

2. RELATED WORK

In the literature, several techniques in both block-based and keypoint-based have been introduced for 
copy-move forgery detection. Among the block-based methods, Discrete Cosine Transform (DCT) 
is considered as the most widely used. (Fridrich et al., 2003) suggest the first method for detecting 
copy-move forgery; they used 256 coefficients of DCT as features. Further improvements based on 
DCT have been introduced in (Cao et al., 2011b, 2011a; Hu et al., 2011; Junhong, 2010). Although 

Figure 1. Existing image forgery detection techniques
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block-based methods are robust to noise and JPEG compression, they are sensitive to geometric 
transformations like rotation and scaling and often result in significant false positives. Moreover, they 
have large feature vector size. It results in a high computational complexity (Christlein et al., 2012). 
In contrast, keypoint-based methods outperform block-based methods. They match features of the 

Figure 2. Examples of blind forgery: (a) and (c) Original images; (b) Copy-move forged image; (d) Spliced forged image

Figure 3. Common processing pipeline for copy-move forgery detection
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image instead of blocks. Hence, it results in less computational complexity and minimum memory 
consumption (Dada et al., 2016).

On the other hand, keypoint-based methods exhibit the most accurate and stable results in the 
presence of geometrical transformations (e.g. scaling, rotation, and affine transformation). Scale-
Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF) are most widely used 
keypoint-based methods. (Amerini et al., 2011) introduce a SIFT-based method in which feature 
vectors are extracted by SIFT. Then, they are matched using generalized 2-nearest neighbor (g2NN) 
algorithm followed by agglomerative hierarchical clustering. Although this method can deal with 
multiple copy-move forgery, it fails to localize copy move regions accurately. In addition, it is unable 
to separate duplicated regions that are near one another. Moreover, sometimes clustering could be 
unacceptable because it needs to set an empirical threshold to stop the process.

Shivakumar and Baboo (B.L.Shivakumar & Baboo, 2011) used Harris detector as keypoints 
detector while SIFT is used as a descriptor. The k-dimensional tree (kd-tree) algorithm is utilized 
for matching keypoints and for detecting duplicated regions. Pan and Lyu (Pan & Lyu, 2010) present 
another SIFT-based detection algorithm. The detected SIFT keypoints are matched using the best-bin-
first algorithm followed by Random Sample Consensus (RANSAC) algorithm for geometric tampering 
estimation. However, quantitative results on a realistic dataset are not offered and cannot accurately 
detect tampered regions because of the lack of correct matched points. This method has a deficient 
performance when detecting small duplicate regions. In (Li et al., 2015), they present a method based 
on SIFT and segmentation. They suggest the use of EM algorithm for transform estimation refinement 
to reduce false matches. However, their method suffers from high computational complexity. Their 
work is tested using two datasets and cannot detect plain copy-move forgery accurately. Moreover, 
they identified some unforged images as forged. Yang et al. (Yang et al., 2017) present a method 
based on hybrid features. They used interest point detector called KAZE combined with SIFT for 
feature extraction. KAZE is a Japanese word that means wind.

Although keypoint-based methods record a good performance, they still suffer from several 
issues that critically affect the tampering detection. Most prior methods empirically select thresholds 
and do not consider its relationship with the image and forged region size. Furthermore, they cannot 
detect enough keypoints in flat areas, which result in many false negatives and inaccurate localization. 
Generally, an effective and efficient copy-move forgery detection technique should be robust to image 
processing operation (i.e. intermediate and post-processing operations). Moreover, it should accurately 
localize tampered regions and attain less computational complexity.

3. PROPOSED METHOD

The proposed method detects copy-move forgery based on SIFT features and agglomerative hierarchical 
clustering. The estimation of threshold that can effectively and efficiently handle the most common 
issues related to keypoint-based methods is done automatically. In our experiment, CLAHE based on 
Rayleigh distribution function is applied. Clip limit and tile size are set to 0.01 and 4×4 respectively. 
As shown in Figure 4, the whole detection process of the proposed method. In our detection scheme, 
the image is first preprocessed. Then, features are extracted using SIFT. Distinctive SIFT keypoints 
are then matched between each other using fast approximate nearest neighbor method. After that, 
hierarchical clustering is applied on the matched points. Finally, the image is filtered, and tampered 
regions are localized. Each step of the detection method will be described in detail in the following 
subsections: section 3.1 describes the image preprocessing, section 3.2 introduces SIFT features 
extraction, section 3.2 illustrates keypoint matching, section 3.3 presents the clustering and forgery 
detection, section 3.4 shows the process of estimating affine transformation and finally section 3.5 
illustrates how tampered regions are localized.
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3.1. Image Preprocessing by CLAHE
As mentioned earlier, SIFT feature extraction algorithm cannot detect enough keypoints in flat areas. To 
limit this issue, in our work, Contrast-Limited Adaptive Histogram Equalization (CLAHE) (Ma et al., 
2017) is used to enhance the contrast of the image. CLAHE is locally adaptive contrast enhancement 
method. In contrast to global HE, CLAHE works locally in small areas called tiles as opposed to the 
entire image. Each tile’s contrast is improved, so that the processed histogram region approximately 
matches the histogram specified by a distribution function (e.g. uniform, Gaussian, or Rayleigh). 
Before computing the Cumulative Distribution Function (CDF) in CLAHE, the histogram is clipped 
at a specific value which limits the noise amplification. CLAHE depends on two main parameters: 
Block (tile) Size and Clip Limit. The quality of the improved image is controlled mainly by these 
parameters. Rayleigh distribution is one of the commonly used histogram clips, which produce a 
bell-shaped histogram (Ma et al., 2017). Rayleigh distribution function is given by:

y i y
p imin( ) = + ( ) −
− ( )












2 1

1

1
2α ln 	 (1)

where y
min

 is the lower bound of the pixel value, α  is a scaling parameter of Rayleigh, and p i( )  is 
cumulative probability which is provided to create transfer function. A higher value of α  will result 
in more significant contrast enhancement in the image, increasing saturation value and amplification 
of noise levels.

Figure 4. Framework of the proposed copy-move forgery detection method
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Using CLAHE offers many advantages; easy to implement; simple calculation, and it provides 
good results in image’s local areas. CLAHE can limit brightness saturation that usually results from 
HE and results in less noise (Kumar & Sharma, 2008).

It worth noticing that applying CLAHE generally on all images will not always result in satisfying 
results. Some image regions may become oversaturated or darker which will critically affect the 
tampering detection results. Thus, CLAHE will only be applied on low contrast images. In our 
experiment, CLAHE based on Rayleigh distribution function is applied. Clip limit and tile size are 
set to 0.01 and 4×4 respectively.

3.2. SIFT Features Extraction and Description
The proposed method is based on an effective keypoint detector and descriptor called Scale Invariant 
Feature Transform (SIFT) (Lowe, 2004). SIFT algorithm extracts distinctive features (or local features) 
in digital images that are invariant to image scaling and rotation and provide robustness to changes in 
illumination, distortion, noise addition, and 3D viewpoint (Lowe, 2004). It is applied to the input image 
to extract SIFT distinctive keypoints which are represented with 128-dimensional feature vector. As 
described in (Lowe, 2004), the following are the major stages of SIFT algorithm explained briefly:

•	 Scale-space peak selection: The goal of this stage is to identify locations and scales that can be 
frequently assigned under divergent views of the same object. That is done by detecting extrema 
using a difference of Gaussian function at different scales of the image;

•	 Keypoint localization: Some of keypoint candidates result from the previous stage are unstable 
(i.e. they lie along an edge, or they have a low contrast). For that a detailed model is fit to the 
nearby data for accurate location, scale, and contrast. So, unstable keypoints are rejected and 
hence increase the efficiency and the robustness of the algorithm. At the end of this stage obtained 
keypoints are stable and scale invariance. For more details, see (Lowe, 2004);

•	 Orientation assignment: Based on local image properties, one or more orientations are assigned 
to each keypoint. Around each keypoint gradient direction and magnitude are calculated. Then the 
most prominent gradient orientation(s) are identified and assigned to that region. Now, keypoints 
that are rotation invariance are obtained;

•	 Keypoint descriptor: After assigning location, scale and orientation for each keypoint, a 
descriptor is computed for the local image region based on a window around the detected 
keypoint. Therefore, the output of this step is a unique SIFT keypoints that are represented with 
128-dimensional descriptor vectors. Keypoints descriptor is highly distinctive and it is invariant 
to scaling, rotation, illumination change and 3D viewpoint.

3.3. Keypoint Matching
In a copy-move forgery, keypoints extracted from the original and duplicated regions have the same 
descriptor vectors. Therefore, matching between them is applied to authenticate copy-move forgeries 
in the image. Usually matching between detected keypoints is done using g2NN as in (Amerini et al., 
2013; Dada et al., 2016; Li et al., 2015; Mohamdian & Pouyan, 2013). Anyway, it is known to suffer 
from high complexity when identifying the similarity from many high dimensional vectors. In addition, 
it gives less accurate results especially in high dimensional space. Moreover, lexicographic sorting 
yields higher false negative rate (Christlein et al., 2010). To address these issues, Fast Approximate 
Nearest Neighbor (FANN) method introduced by Muja et al. (Muja & Lowe, 2009) is used. It is based 
on Best-Bin-First (BBF) search which is a variant of a KD-tree that is used for finding approximate 
nearest neighbors with highest probability and less time. In the work introduced in (Christlein et al., 
2010), it has been shown that the use of KD-tree matching generally gives a better results compared 
to lexicographical sorting especially in very-high-dimensional space. The idea of BBF is to search 
in bins of kd-tree in order of distance from the query using a priority queue. The distance to a bin 
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(node) is the minimum distance between the query and any other point on the bin boundary. At each 
internal node visited store the position and the distance in the queue instead of backtracking, pop the 
closest distance from the queue and continue from it (Lowe, 2004).

Given a test image, a set of keypoints F f f
n

= …{ }1�
, ,  and its corresponding descriptor 

D D D
n

= …{ }1
, ,  are extracted. Matching operation is performed between feature descriptors to 

identify the similarity between them. Features descriptor is used to build the KD-tree. After that BBF 
search is applied on the kd-tree to find the N nearest neighbors of each keypoint f

i
 from all other 

(n-1) keypoints of the image. Nearest neighbor is computed using Euclidean distance. Let sorted 
Euclidean distance which is known as similarity vector denoted by d d d d

n
= …{ }−� , , ,

1 2 1
. As suggested 

by (Lowe, 2004), the ratio between the distance of closest neighbor to the distance of the second 
closest neighbor is calculated and then the result is compared to a predefined threshold T (usually 
range from 0.3 to 0.5) to reduce false matches. Therefore, the keypoint is matched only if the following 
constraint is satisfied:

d
d

T where T1
2

0 1< ( )�� , , � 	 (2)

Since copy-move forgeries may have same image area that is cloned multiple times, it is necessary 
to handle this case. FANN algorithm can manage multiple copy-move forgery. At the end of this 
stage, all the matched keypoints are kept and isolated, and ones are discarded.

3.4. Clustering and Forgery Detection
In order to identify possible forged regions and group spatially closed keypoints, Agglomerative 
Hierarchical Clustering (AHC) (Hastie et al., 2003) is applied on spatial locations of matched feature 
pairs. AHC is a bottom-up clustering method. Hierarchical clustering creates a hierarchy of clusters 
where clusters have sub-clusters, which in turn have sub-clusters, etc. It starts with each keypoint in 
its own singleton cluster. Pair-wise distances between clusters are then evaluated. It agglomerates 
(merges) the closest pair of clusters with shortest distance. This process is repeated until all clusters 
have been merged into a single cluster that contains all keypoints. AHC can be visualized using a 
tree-like diagram called a dendrogram. It shows the progressive grouping of the keypoints. It is then 
possible to determine what suitable number of clusters is. Generally, merging of the keypoints is 
determined by two criteria: the linkage method and the cutoff threshold used to stop clustering. Cutoff 
threshold plays a key role in forgery detection and it critically affects the results. Often, the problem 
of cutting off a dendrogram has been a difficult issue in hierarchical clustering researches (Abe et al., 
2017). Usually, setting cutoff threshold requires many experiments and optimization as in (Amerini 
et al., 2011). Moreover, determining cutoff threshold is so tricky because of different size of images 
and different size of forged regions. To handle this issue, the proposed method uses dynamic cutoff, 
which automatically terminates the clustering process once optimal number of clusters are obtained. 
It estimates optimal number of clusters based on internal cluster validity measures. Generally, cluster 
validation is used to verify that any found cluster is really in data rather than being produced from 
algorithms artifacts (Everitt et al., 2011). Cluster validation can be divided into two main methods: 
Internal and external (Halkidi et al., 2002). Internal methods measure cluster quality based on 
inter-cluster separation and intra-cluster compactness (cohesion). In our work, two commonly used 
internal methods for AHC are introduced: gap statistics (Tibshirani, 2001) and silhouette width (Gan, 
2007). The proposed method is compared using gap statistic and silhouette width (see sections 4.3 
and 4.4 for a detailed description of such experiment). Mathematical details for both gap statistic 
and silhouette coefficient are given in section 3.4.1 and 3.4.2 respectively. For the linkage method, 
the “Ward” linkage is used in the proposed method as it gives the best results (Amerini et al., 2011). 
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Ward’s method supposes that a cluster is represented by its centroid. The increase of Sum of Squares 
Error (SSE) that results from merging two clusters is used by Ward method to measure the proximity 
between two clusters. Sum of squares in AHC starts at zero (every point is in its own singleton cluster) 
and grows as merging the clusters. Ward’s method attempts to minimize SSE distances of points from 
their cluster centroids to keep this growth as small as possible.

Given two clusters, A and B, the distance between them given by (Amerini et al., 2011):

∆ ( ) = ( )− ( )+ ( )



dist

A B SSE AB SSE A SSE B, 	 (3)

where:

SSE A x x
i

n

Ai A

A

( ) = −
=
∑

1

2
� � 	 (4)

where ∆  is called the merging cost of combining the clusters A and B, n
A

 is number of points in 
cluster A, x

Ai
 indicates the ith point in cluster A, and x

A
 is the centroid.

3.4.1. Gap Statistic
The gap statistic (Tibshirani et al., 2001) is used to estimate the optimal number of clusters. The idea 
is that for different values of k clusters, the changes of the total within intra-cluster are compared 
with its expectation under a null hypothesis (i.e. a distribution with no clustering). Value of k that 
maximizes the gap statistic represents the estimation of the optimal number of clusters. This means 
that the structure of clustering is much far from the random uniform distribution of points. There 
are two choices of reference distribution either based on uniform distribution or based on principal 
component analysis (more details in (Tibshirani et al., 2001). For simplicity, in the proposed method, 
uniform reference distribution is used. The following are how gap statistics work briefly:

1. 	 Cluster the data into k clusters with C C C C
r k
= …{ }1 2

, , .,  denoting the indices of data in cluster 
r;

Compute the pairwise distance for all points in cluster r such that:

D d
r

i i C
ii

r

=
′∈
∑�
,

’� 	 (5)

Compute the total within intra-cluster such that:

w
n
D

k
r

k

r
r

=
=
∑

1

1

2�
� 	 (6)

4. 	 B reference data sets are generated based on a reference distribution method. Then every of those 
reference data sets is clustered into k clusters;

5. 	 The corresponding total within intra-cluster variation W b B k K
kb
* , , , ., , , , ,= … = …1 2 1 2  is 

computed;
The estimated gap statistic is computed:
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Gap k
B

W w
b

B

kb k( ) = ( )− ( )
=
∑
1

1

� � *log log 	 (7)

Compute the standard deviation sd
k

 and define the standard error s
k

:
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B
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where:

l
B

W
b

kb
=








 ( )∑
1
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8. 	 Finally, the smallest value of k is selected as the optimal the optimal number of clusters k  �  in 
which the gap statistic is within one standard deviation of the gap at k+1:

k smallest k such that Gap k Gap k s
k

�= ( ) ≥ +( )− +   , 1
1
	

3.4.2. Silhouette Width
The Silhouette width (Gan, 2007) can be used to represent the compactness and separation of clusters. 
It measures the closeness between every point in one cluster to the points within the neighboring 
clusters. For different values of k, the average Silhouette of observations is computed. Such that, the 
one that maximizes the average Silhouette over all potential k values represent the optimal number 
of clusters k. Suppose point x

i
 belongs to cluster k. First, let the average distance between this point 

and all others in the same cluster represented by a
i
. Second, let the average distance between this 

point and those in cluster l k≠  represented by d
li

. Let the average distance between x
i
 and the 

nearest cluster of which it is not a member is denoted by, b min d
i l l
= . Therefore, the Silhouette width 

is given by:

s x
b ak

a bi
i i

i i

( ) = −




max ,
	 (11)
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Larger value of s x
i( )  means that x

i
 lies better in its cluster. Entire clustering structure is measured 

by the average Silhouette of all data points (also called Silhouette Width Criterion SWC). Best 
clustering structure corresponds to maximized SWC. It is given by:

SWC
N

s x
i

N

i
= ( )

=
∑

1

1

	 (12)

3.5. Affine Transform Estimation
Preliminarily, we know that image is tampered and where the source region and target (copy-moved) 
region. Since copy-move regions undergo geometric distortions (such as scaling, rotation), the 
relationship between tampered regions is estimated using affine transformation specified by a 
transformation matrix H. Given the coordinate of two corresponding matched points from a region 

and its duplicate as X x y
T

= ( ),  and � � �X x y T= ( , ) , respectively. The geometric relationship between 
these two regions is expressed as:

�X HX= 	 (13)

It can be expressed in matrix form as:
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where the parameters a
11

, a
12

, a
21

, a
22

, are associated with scaling and rotation, while t
x

, t
y

 are 
associated with translation. Since affine transformation has six degrees of freedom (six matrix 
parameters), there is a need for at least three matched pairs not to be collinear to obtain the affine 
transformation. Given a set of correspondences X X

n1
, ,…( )  and � �X X

n1
, .,…( ) , the transformation 

matrix H can be computed by means of minimizing the following total error function:

i

n

i i
X HX

=
∑ −

1

2� �	 (15)

Mismatched points or outliers can solely affect the estimated homography H. In that case, a 
widely used method for robust estimation called Random Sample Consensus (RANSAC) (Fischler 
& Bolles, 1981) is employed to perform the previous estimation more accurately. This method is also 
adopted by some other CMFD techniques (Amerini et al., 2011; Dada et al., 2016). RANSAC randomly 
selects three pairs of points or more from the matched points and estimates the homography matrix 
H by minimizing the total error function given in equation (15). Then, according to H, all the remaining 
points are transformed. After that, all pairs of matched points are classified into inliers or outliers 
depending on the estimated matrix H. A pair of matched points considered as inlier if �X HX− ≤ β , 
otherwise, it is outlier. After N

i
 times of iteration, RANSAC returns the estimated transform 
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parameters that result in the biggest variety of inliers. In our experiment, β  is set to 3 and N
i
 is set 

to 1000. Finally, a set of affine transformations H H
n1

, ,…{ }  are acquired.
Estimation of affine transformation is an important stage of CMFD scheme. Falsely detected 

regions that do not have a set of points with uniform transform relationship, will be removed in 
this stage. Moreover, it enhances the detection of copy-move forgery by providing the more details 
about tampered image. In literature, most of recent CMFD methods choose to estimate geometric 
transformations (Amerini et al., 2011; Shivakumar & Baboo, 2011; Dada et al., 2016; Hashmi et al., 
2014; Li et al., 2015).

3.6. Tampered Regions Localization
Once an image is considered as tampered, duplicated regions can be accurately localized. With the 
estimated affine transformation H, identical regions are found by comparing each pixel in the image 
with its transformational counterpart. In the proposed method, a localization method is used as in 
(Yang et al., 2017). Localizing tampered regions is illustrated in the following steps:

1. 	 All points in the image are transformed forward with the matrix H  and backward with the inverse 
matrix H −1  let original region Ro  and its related tampered region RF  then the relation between 
these two regions in terms of transformation matrix is:

R HR R H RF o o F= = −,    1 	

To localize the tampered regions, the similarity between the original image I and transformed 
(warped) image T is measured using Zero Mean Normalized Cross-Correlation (ZNCC). Let pixel 
intensities at location x denoted as I x( )  and T x( ) , then:

ZNCC x
I v I T v T

I v I T v T

Z
v x

v x

( ) =
( )−( ) ( )−( )

( )−( ) ( )−( )
∈ ( )

∈ ( )

∑

∑

Ω

Ω

2 2
, NNCC ∈ ( )0 1, 	 (16)

where Ω x( )  a 7×7 pixels neighboring area centered at location x . I v( )  and T v( )  are the pixels 
intensities at location v . I  and T  are the average pixel intensities of I and T computed at Ω x( ) . 
Larger value of ZNCC indicates high similarity.

2. 	 Correlation map is now obtained, to reduce noise, Gaussian filter of size 7 pixels is applied. 
Then, it is converted to binary image with a threshold value (th=0.55 in our experiments);

3. 	 Finally, morphological operation is applied to fill the holes in the binary image.

4. EXPERIMENTAL RESULTS

In this section, the performance of the proposed detection method is evaluated. Section 4.1 describes 
the test image dataset used in our experiments. Error measures are introduced in section 4.2. Results on 
MICC-F220 and benchmark datasets are illustrated in section 4.3 and 4.4, respectively. A comparison 
of the proposed method and other related methods is given in section 4.5. In section 4.6, the robustness 
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of the proposed method to processing operations is shown. Finally, section 4.7 shows the ability of 
proposed method to detect multiple copy-move forgeries. All measurements are performed on a 
desktop computer with Intel Core i5 1.7GHz CPU and 4 GB RAM memory, running Matlab R2016b.

4.1. Test Image Dataset
In our experiments, two publicly available datasets are used. Both are the most widely used datasets 
by CMFD methods (Bakiah et al., 2016). The first dataset is MICC-F220 introduced by Amerini 
(Amerini et al., 2011). It totally consists of 220 images: 110 are original images and 110 are tampered. 
The image resolution ranges from 722 × 480 to 800 × 600 pixels. About 1.2% of the entire image is 
covered by a forged region. The processing operation in this dataset only limited to translation, scaling 
and rotation. The ground truth of this dataset is not given. The second dataset used benchmark dataset 
created by (Christlein et al., 2012). This dataset is consisting of 48 basic images and their transformed 
images, such as rotation, scaling, JPEG compression and additive noise. Parameters applied on each 
attack is given in Table 1. Images of this dataset are quite large, its average size is about 3000 × 2300 
pixels. About 10% of the entire image is covered by a forged region. In this dataset, the duplicated 
regions are meaningful, which are categorized as either: rough (e.g., rocks), smooth (e.g., sky), or 
structured (Christlein et al., 2012). This dataset is provided with a ground truth. Table 2 illustrates 
the details about each dataset.

In our experiments, totally 1756 images have been tested. There are 220 images from MICC-F220 
dataset. From Benchmarking dataset: (1) 48 original images, (2) Plain copy-move: 48 tampered 
images without any processing operations applied. (3) Rotation: the duplicated regions are rotated 
by angle varying from 2° to 10° with step length 2°. This means that there are totally 48 × 5 = 240 
images. (4) Scaling: the duplicated regions are rescaled with ratio between 91% and 109% of its 

Table 1. Setting of attacks parameters

Attacks Parameters

Rotation Angle (2°:2°:10°)

Scaling Ratio (0.91:0.02:1.09)

JPEG Compression Quality Factor (20:10:100)

Noise addition Deviation (0.02:0.02:0.1)

Table 2. Details about image datasets used

Dataset Image Size Total Images Processing Operations Ground 
Truth

MICC-F220 722 × 480 to 800 
× 600

Total: 220 -Translation﻿
-Rotation﻿
-Scaling (symmetric, 
asymmetric)﻿
-Combined transformation

No

Original﻿
110

Tampered﻿
110

Benchmark CMFD 420 × 300 to 
3888×2592

Original 48 -Rotation﻿
-Scaling﻿
-JPEG Compression﻿
-Noise﻿
-Combined transformation

Yes

Tampered﻿
- 48 (plain CMF)﻿
-240 (Rotated)﻿
-480 (Scaled)﻿
-423(JPEG)﻿
-240(Noise)
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original size, with step length 2%. That results in 48 × 10 = 480 images. (5) JPEG Compression: 
The forged images are compressed with quality factors varying from 20 to 100 with step length 20. 
In this case, there are 84 × 9 = 432 images. (6) Noise addition: noise is added to duplicated regions 
with standard deviation varying from 0.02 to 0.1 with step length 0.02. Therefore, totally there are 
240 images. (7) Multiple Copies: for each of the 48 images, a block size of 64 × 64 pixels are selected 
and randomly copied five times.

4.2. Error Measures
To test the performance of our CMFD method, we follow the approach presented by (Christlein et 
al., 2012). Performance of CMFD scheme is evaluated at two levels: (1) Image level: the ability to 
determine if the image has been tampered or not. (2) Pixel level: the ability to localize tampered 
regions correctly. Commonly used evaluation metrics in CMFD to calculate the accuracy are True 
Positive Ratio (TPR) and False Positive Ratio (FPR) see Table 3. A CMFD technique is efficient if 
it maintains a high TPR while the FPR at the minimum level. The calculation for TPR (recall), FPR 
and precision given as:

Precision =
+
TP

TP FP
�	 (17)

Recall =
+
TP

TP FN
	 (18)

FPR =
+
FP

FP TN
	 (19)

In the proposed method, if at least one affine transformation is estimated between forged image 
regions, an image is taken into account as forged. In addition, F1 score is used as an evaluation metric 
(Christlein et al., 2012), which combines precision and recall into a single value:

F
1
2= ⋅

⋅
+

precision recall

precision recall

� 	 (20)

Table 3. Evaluation measures description

Measures Description

TP (True positive) Correctly detected forged images

TN (True Negative) Correctly detected original images

FP (False positive) Original images falsely detected as forged

FN (False Negative) Falsely missed forged images
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At pixel level, the same evaluation metrics are used where TP represents number of pixels that 
are correctly detected as forged, FP number of pixels that are falsely detected as forged and FN shows 
falsely missed forged pixels.

4.3. Results on MICC-F220 Dataset
It worth to notice that image size and forged region size play an important role when evaluating 
forgery detection method. In this dataset, image sizes are not so large. As mentioned earlier, images 
size is varying from 722 × 480 to 800 × 600. The forged regions are small compared to the whole 
image. It was found that the smaller the size of the image and the forged region is, the lesser the 
number of features and matched points are found. In our matching method, the threshold value is set 
to 0.5 that yields the best results. Lower threshold value will result in small matched points while 
larger values will result in high false matches. For the cluster validity measures, both gap statistics 
and Silhouette width are applied, and the results are compared. The k value (clusters list) is varying 
from 1 to 7. Large range of k will result in low TPR and high FPR because cluster sizes depend 
highly on number of matched points. Silhouette width produces the best results in terms of TPR and 
FPR as illustrated in Table 4.

4.4. Results on Benchmark Dataset
As previously mentioned, the image size of this dataset is relatively large. Its average size is 
3000×2300. Large images are more challenging, since an overall higher number of feature vectors 
exists, and thus there is a higher probability of false positives. In this case, the matching threshold is 
set to 0.4. To avoid high false positives, the value of k is set from 1 to 20. The ability of the proposed 
method is examined in different cases: plain copy-move forgery, robustness to processing operations: 
rotation, scaling, JPEG compression and noise addition and in multiple pasted regions. We also 
compare results using gap statistics and Silhouette width. In this dataset, gap statistics represent the 
best results. Figure 5 shows some examples of tampered images detected by the proposed method. 
The localization detection results on the test images with CMF regions fused in the background are 
illustrated in Figure 6. The proposed method detects most CMF regions.

4.5. Comparisons With Other Relevant Methods
To verify the performance of the proposed method, our results is compared with various recent 
keypoint-based methods. All comparisons are made using MICC-F220 dataset and the benchmark 
dataset. The methods used for comparison include: pan and Lyu (Pan & Lyu, 2010), Amerirni et. al 
(Amerini et al., 2011), Shivakumar and Baboo (B.L.Shivakumar & Baboo, 2011), Li et. al (Li et al., 
2015), Hashmi et. al (Hashmi et al., 2014), and Yang et al. (Yang et al., 2017). Using MICC-F220 
dataset, the proposed method is compared with methods in (Amerini et al., 2011) and (Hashmi et al., 
2014). The proposed method and the method presented in (Amerini et al., 2011) achieve best TPR, 
but the proposed method achieves less FPR as shown in Table 5. The processing time of the proposed 
method (per image) on average about 0.43 seconds, whereas the other two methods take about 4.94 
and 2 seconds respectively. Using benchmarking dataset, the performance in case of plain copy-move 
forgery is evaluated. In such case, 48 original images and 48 forged images are used without applying 
any processing operations. In this case, the CMFD methods must differentiate whether the image has 

Table 4. TPR and FPR values on MICC-F220 with respect to cluster evaluation method

Method TPR FPR

Gap statistics 95.45% 8.18%

Silhouette width 100% 6.36%
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been tampered or not. Detection results of plain copy-move forgery are shown in Table 6. Note that 
the proposed method and the method presented in (Li et al., 2015) obtain the best results in terms of 
recall rate, 100% and 97.72%, respectively. For precision rate, the proposed method obtains the best 
result reaching to 90.9%, followed by the method presented in (Hashmi et al., 2014) of 88.89%. In 
addition to the precision and recall, the proposed method achieves the best F

1
 score of 95.23% 

compared to other methods. In conclusion, the proposed method obtains the best results in terms of 
recall, precision and F

1
 core compared to other methods.

4.6. Robustness to Processing Operations
The proposed method has additionally been tested in terms of detection performance from a robustness 
point of view; the impact of rotation, scaling, JPEG compression and noise addition using benchmark 
dataset (Christlein et al., 2012):

1. 	 Robustness to gaussian noise: Image intensities between 0 and 1 are normalized and zero-mean 
Gaussian noise with standard deviations of 0.02, 0.04, 0.06, 0.08 and 0.10 is added. It can be 
noticed that as standard deviation increased the false negatives also increased and true positives 
decreased. In addition, a standard deviation of 0.10 leads to obviously visible artifacts (Christlein 
et al., 2012). Generally, the proposed method maintains high TPR as illustrated in Table 7;

2. 	 Robustness to JPEG compression artifacts: The quality factors varied between 100 and 20 
with step length 10. The same JPEG compression applied to 48 forgeries per quality level. The 
visual quality of the image is highly affected when the quality factor is very low. For real-world 
forgeries, quality levels down at least 70 are considered as acceptable assumptions (Christlein 
et al., 2012). TPR tends to slightly reduce when image quality decreases. Proposed method 
maintains high TPR as illustrated in Table 7;

Figure 5. Examples of tampered images detected by proposed method
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Figure 6. Detection results on the images with copy-move forgery regions combined in the background. The first column represents 
the test images from benchmark dataset. The second column represents the ground truth of the copy-move forgery regions in 
these images. The third column shows the localization detection results of the proposed method.

Table 5. Detection results on MICC-F220 dataset and processing time (average, per image)

Method TPR (%) FPR (%) Time (s)

Amerirni et. al (2011) 100 8 4.94

Hashmi et. al (2014) 80 10 2

Proposed 100 6.36 0.43

Table 6. Detection results of the plain copy-move forgery on benchmark dataset

Methods Precision (%) Recall (%) F1

Pan and Lyu (2010) 80.49 68.75 74.15

Amerirni et. al (2011) 88.4 79.2 79.2

Shivakumar and Baboo 
(2011)

77.27 70.83 73.90

Li et. al (2014) 70.17 83.33 76.19

Hashmi et. al (2014) 88.89 80 84.21

Yang et. al (2017) 78.33 97.92 87.04

Proposed 90.90 100 95.23
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3. 	 Robustness to rotation and scaling: Flexibility of CMFD algorithms to affine transformations, 
like scaling and rotation is very important. The proposed method shows strong invariance to 
scaling and rotation. Performance of the proposed remains relatively stable across the whole 
scaling parameters and different rotation angles. Proposed method results in 100% TPR for both 
scaling and rotation see Table 7.

4.7. Detection of Multiple Copies
In the proposed method, we address the detection of multiple copies of the same region. As more 
combinations of matched regions, the chance of false match increases. Table 8 illustrates the detection 
results of our proposed method of multiple copies in terms of TPR using different threshold values. 
Generally, the performance will decrease, mainly since the random choice of small blocks typically 
yields regions with only a few matched keypoints (Christlein et al., 2012).

5. CONCLUSION

Detecting copy-move forgery is a challenging task. Dependence of empirical thresholds in existing 
CMFD techniques is a critical issue. This paper proposes a CMFD method that automatically 
determines the optimal number of clusters using internal cluster validity measures. The method uses 
Gap Statistic and Silhouette width for automatic cutoff threshold in AHC. The proposed method has 
been evaluated using two publicly available datasets MICC-F220 and Benchmark dataset. Experimental 
results exhibit that the proposed method yields higher precision and recall, and lower false negative 
values compared to alternative similar works within the literature. It also shows robustness against 
different attacks such as scaling, rotation, JPEG compression, and additive noise. Future work can be 
extended to work on videos and handle other types of image forgery like image splicing.
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Table 7. Robustness to processing operations

Attacks Total Number of 
Images Parameters TP Recall (%)

Rotation
(angle)

240
2°

48 100

4° 48

6° 48

8° 48

10° 48

Scaling
(ratio)

480 0.91 48 100

0.93 48

0.95 48

0.97 48

0.99 48

1.01 48

1.03 48

1.05 48

1.07 48

1.09 48

JPEG Compression
(quality factor)

432 20 45 98.61

30 47

40 46

50 48

60 48

70 48

80 48

90 48

100 48

Noise
(standard deviation)

240 0.02 47 96.67

0.04 47

0.06 46

0.08 46

0.10 46
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Table 8. Results for multiple copy-move forgery

Threshold TPR (%)

0.4 93.75

0.5 95.83

0.6 97.92
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