
Internet of Things
MQTT for IoT Messaging
IoT Team, BFCAI

MQTT: Informal Introduction

▪ An admin (publisher) can publish a new post (topic) on a Facebook page.

▪ Facebook (broker) will send that topic to subscribers who liked the page.

Publisher

Topic

Publish

Broker

Subscriber #1

Subscriber #2

Subscriber #3

Topic

MQTT: Formal Introduction

▪ MQTT stands for Message Queuing Telemetry Transport.

▪ It is a messaging protocol designed for easy implementation.

▪ It is a lightweight communication protocol with minimal packet overhead.

▪ It is generally used for communication between IoT devices.

▪ MQTT is designed especially for the Internet of things (IoT).

▪ MQTT is more and more becoming the standard messaging protocol for

IoT messaging.

▪ MQTT was developed by IBM in 1999.

▪ MQTT is a publish/subscribe protocol.

MQTT: Broker

▪ In MQTT, the clients (such as sensors, machines, and applications) do not

directly communicate with each other but via a broker.

▪ Broker is a intermediary device connects various publishers and

subscribers by managing and routing the data.

MQTT: Broker

▪ And just as functioning of the heart is critical for the human body, a

reliable and performant MQTT broker is critical for IoT operations.

▪ The MQTT broker receives the data from the senders, filters the data

packets, and forwards them to the receiving clients.

MQTT: Publishers & Subscribers

▪ Clients sending data are called publishers.

▪ Clients who receive data are called subscribers.

▪ In a publish and subscribe system, a device can publish a message on a

topic, or it can be subscribed to a particular topic to receive messages

MQTT: Publishers & Subscribers

▪ An MQTT system enables receiving clients to become publishers as well.

MQTT: Messages

▪ Messages are the data that you want to exchange between your devices.

▪ For example, a message can be a command or data like sensor readings.

MQTT: Topics

▪ A topic is the way you register interest for incoming messages or how you

specify where you want to publish the message.

MQTT: Functionality

▪ First, the publisher sends the data collected to the broker on a particular

topic, which is similar to a channel for data transmission.

▪ Please note that a topic can have several subtopics too.

▪ For example, in an application where you send the temperature data from

a sensor connected to your fridge, the topic will look something like this:

Kitchen/Fridge

▪ The main topic is the kitchen, and the Fridge is the subtopic.

▪ The message will be Temperature:14 on the given topic.

MQTT: Functionality

▪ The subscribers listen to the topic.

▪ So, if the subscriber is listening to the Kitchen topic, it will have access

to all the subtopics that are a part of this topic.

Kitchen/Fridge

▪ The primary function of the broker is to manage all the available topics

and route the information according to the type of client, namely

publishers and subscribers.

▪ Note that both the publishers and subscribers are referred to as clients.

▪ A client can be a publisher, subscriber, or both.

MQTT: Air Quality Monitoring System

▪ Publishers: Devices or machines are responsible for sending the collected

data to the brokers.

If you have an air quality monitoring system that monitors the CO2 levels

in the air every 30 seconds, the device will be set to publish the CO2

concentration values every 30 seconds.

▪ Subscribers: Devices receive the requested sensor data from the brokers.

An air purifier can be a subscriber of our air quality monitoring system.

It receives the CO2 concentration values every 30 seconds, and when it

crosses a threshold value, the purifier automatically turns on.

▪ Broker: This intermediary device connects various publishers and

subscribers by managing and routing the data.

MQTT: Features

Lightweight and Efficient

▪ MQTT clients are tiny, and they require minimal resources to operate.

▪ So, even microcontrollers such as ESP8266 can be used as a client as long

as they have an active connection to a network.

Bidirectional Communication Protocol

▪ This means a device can be a publisher and a subscriber at the same time.

▪ This also allows easy broadcasting of messages to several devices at once.

MQTT: Features

Highly Secure

▪ MQTT makes it easy to encrypt messages.

▪ The standard unsecured port is 1883.

▪ The default secured MQTT broker port is 8883.

▪ The use of ACLs (Access Control Lists) allows restriction of subscriptions

and publishing of clients.

MQTT: Features

Highly Scalable

▪ There is no worry about maintaining clients’ addresses or IDs.

▪ It is effortless to expand the MQTT network.

▪ The only things required are the broker’s IP address and the topic name.

Reliability

▪ MQTT is highly reliable when it comes to message delivery.

▪ MQTT comes with three predefined quality of service:

QoS 0: At most once

QoS 1: At least once

QoS 2: Exactly once

MQTT: Quality of Service (QoS)

▪ MQTT provides three Quality of Service (QoS) levels for individual

message delivery.

▪ MQTT QoS is an agreement between the message sender and receiver that

defines the level of delivery guarantee for a specific message.

QoS Level Meaning # Messages Delivered

Level 0
The message will be delivered at

most once, but maybe not at all.
0 or 1

Level 1
The message will be delivered at

least once, but perhaps more.
1 or more

Level 2
The message will be delivered

exactly once.
1

MQTT: QoS Level 0

▪ In QoS Level 0 (Fire and Forget Level), messages are sent without any

confirmation from the receiver.

▪ This means it is technically possible for a message to get lost, given an

unreliable connection.

MQTT: QoS Level 1

▪ In QoS Level 1, the receiver must send a confirmation (PUBACK) to let

the sender know that the message was received.

▪ However, it is possible that the receiver gets a message multiple times.

▪ This QoS level ensures that a message makes it from sender to receiver

but does not ensure that it is received exactly once.

MQTT: QoS Level 2

▪ QoS level 2 uses a four-step communication process to ensure a message

is sent exactly once only.

▪ QoS 2 offers the highest level of service in MQTT, ensuring that each

message is delivered exactly once to the intended receiver.

▪ It involves a four-step handshake between the sender and receiver.

MQTT: QoS Level 2 – Explanation

▪ When a receiver gets a QoS 2 PUBLISH packet from a sender, it replies to

the sender with a PUBREC packet that acknowledges the publisher.

▪ If the sender does not get a PUBREC packet from receiver, it sends the

packet again with a duplicate flag until it receives an acknowledgement.

Mosquitto Broker

▪ Mosquitto is a popular and open-source message broker that implements

the MQTT protocol.

▪ Mosquitto is lightweight and is suitable for use on all devices from low

power single board computers to full servers.

▪ The broker receives all messages from the clients, filters the messages,

determines who is subscribed to the topic, and then sends the message to

these subscribed clients.

Mosquitto Broker

▪ In the world of IoT, where devices need to communicate efficiently,

Mosquitto’s ability to handle multiple connections and deliver messages

in real-time is very useful.

▪ Mosquitto MQTT can run on various operating systems, including Linux,

Windows, macOS, and even on Raspberry Pi.

Mosquitto Broker: Installation on Windows

▪ If this message appears, click “Run anyway”.

Mosquitto Broker: Installation on Windows

▪ Click Next.

Mosquitto Broker: Installation on Windows

▪ Click Next.

Mosquitto Broker: Installation on Windows

▪ Choose the installation path, and click Install.

Mosquitto Broker: Unauthenticated Access Configurations

▪ Create a text file named test.conf under the Mosquitto folder

(C:\Program Files\mosquitto).

Mosquitto Broker: Unauthenticated Access Configurations

▪ Open the created file, and write the following commands:

listener 1883

allow_anonymous true

▪ MQTT clients typically connect to the broker on port 1883, which is the

default port for unencrypted MQTT communication.

▪ When allow_anonymous is set to true, clients can connect without

providing a username or password.

Mosquitto Broker: Starting the Broker

▪ Open CMD window and write the following commands:

cd C:\Program Files\mosquitto

mosquitto -c test.conf -v

▪ -c test.conf: Specifies a configuration file for the Mosquitto broker.

▪ -v: Enables verbose mode to provide additional information and logging.

Mosquitto Broker: Getting Broker IP

▪ Open CMD window and write ipconfig to get the broker IP.

Paho MQTT Python Library

▪ The Paho Python Client provides a client class with support for MQTT.

▪ It provides a simple API for working with MQTT, allowing developers to

easily integrate MQTT functionality into their Python applications.

▪ “Paho” means “communicate with everyone”.

▪ You can install the Paho Python Client using the following pip command:

pip install paho-mqtt==1.6.1

Paho MQTT Python Library: Simple Publisher and Subscriber

Python App

(Publisher)

Python App

(Subscriber)
Broker

Paho MQTT Python Library: Python Publisher App
Import the necessary modules
import paho.mqtt.client as mqtt
from time import sleep

MQTT broker address
broker_ip = "192.168.137.1"

MQTT broker port
port = 1883

MQTT topic to which the publisher will publish messages
topic = "home/led"

Quality of Service (QoS)
qos = 0

Create an MQTT client instance with the name "publisher"
client = mqtt.Client("publisher")

Connect to the MQTT broker using the specified IP address and port
client.connect(broker_ip, port)

Infinite loop to continuously publish messages
while True:
 # Message to be published
 message = "Turn On"

 # Publish the message to the specified topic
 client.publish(topic, message, qos)

 # Print a message indicating that the message has been published
 print("Published message:", message)

 # Wait for 2 seconds before publishing the next message
 sleep(2)

Disconnect from the MQTT broker
client.disconnect()

Paho MQTT Python Library: Python Subscriber App

Import the necessary modules
import paho.mqtt.client as mqtt

MQTT broker address
broker_address = "192.168.137.1"

MQTT broker port
port = 1883

MQTT topic to which the subscriber will subscribe
topic = "home/led"

Quality of Service (QoS)
qos = 0

Callback function to handle incoming messages
def on_message(client, userdata, message):
 print("Received message:", message.payload.decode())

Create an MQTT client instance with the name "subscriber"
client = mqtt.Client("subscriber")

Connect to the MQTT broker using the specified IP address and port
client.connect(broker_address, port)

Subscribe to the specified topic
client.subscribe(topic, qos)

Set the callback function for incoming messages
client.on_message = on_message

Start the MQTT client loop to receive messages
client.loop_forever()

Paho MQTT Python Library: Publisher & Subscriber – Output

Python Publisher App Python Subscriber App

Paho MQTT Python Library: Mosquitto – Output

PubSubClient Library

▪ The PubSubClient library provides a client for doing simple

publish/subscribe messaging with a server that supports MQTT.

▪ The library can be installed into the Arduino IDE.

NodeMCU ESP32

PubSubClient Library: Installation on Arduino IDE

▪ Open Sketch → Include Library → Add .ZIP Library.

PubSubClient Library: Installation on Arduino IDE

▪ Choose the library file named pubsubclient-2.8.zip, and click Open.

NodeMCU as Publisher

NodeMCU

(Publisher)

Python App

(Subscriber)
Broker

NodeMCU as Publisher: Code

#include <ESP8266WiFi.h> // Include the WiFi library
#include <PubSubClient.h> // Include the MQTT library

const char* ssid = "iotlab"; // WiFi SSID
const char* password = "hostiotlab"; // WiFi Password

const char* broker = "192.168.137.1"; // MQTT broker address
const int port = 1883; // MQTT broker port
const char* topic = "home/led"; // MQTT topic name

WiFiClient espClient; // Create an object of the WiFiClient class
PubSubClient client(espClient); // Create an MQTT client instance

void setup() {
 Serial.begin(115200); // Initialize serial communication at baudrate of 115200

 WiFi.begin(ssid, password); // Attempt to connect to the Wi-Fi network
 while (WiFi.status() != WL_CONNECTED) { // Wait until the NodeMCU is successfully connected
 delay(1000); // Wait 1 second before rechecking Wi-Fi connection status
 Serial.println("Connecting to WiFi..."); // A message indicating an attempt to connect to Wi-Fi
 }
 Serial.println("Connected to WiFi."); // A message indicating a successful connection

 client.setServer(broker, port); // Connect to the MQTT broker
 client.connect("NodeMCU_Publisher"); // Connect to MQTT broker with the name "NodeMCU_Publisher"
 Serial.println("Connected to MQTT broker."); // Successful connection to MQTT broker
}

void loop() {
 const char* message = "Turn On"; // The message to be published
 client.publish(topic, message); // Publish the message to the specified topic
 Serial.print("Published message: "); // A message prefix
 Serial.println(message); // Print the published message

 delay(1000); // Short delay to avoid rapid publishing
}

NodeMCU as Publisher: NodeMCU Output

NodeMCU as Publisher: Python Output

NodeMCU as Subscriber

Python App

(Publisher)

NodeMCU

(Subscriber)
Broker

NodeMCU as Subscriber: Code

#include <ESP8266WiFi.h> // Include the WiFi library

#include <PubSubClient.h> // Include the MQTT library

const char* ssid = "iotlab"; // WiFi SSID

const char* password = "hostiotlab"; // WiFi Password

const char* broker = "192.168.137.1"; // MQTT broker address

const int port = 1883; // MQTT broker port

const char* topic = "home/led"; // MQTT topic name

WiFiClient espClient; // Create an object of the WiFiClient class

PubSubClient client(espClient); // Create an MQTT client instance

// Callback function to handle incoming MQTT messages

void on_message(char* topic, byte* message, unsigned int length) {

 Serial.print("Message received: "); // A message prefix

 for (int i = 0; i < length; i++) // Loop through the message bytes

 Serial.print((char)message[i]); // Print each character to the Serial Monitor

 Serial.println(); // Move to a new line after printing the message

}

NodeMCU as Subscriber: Code

void setup() {

 Serial.begin(115200); // Initialize serial communication at baudrate of 115200

 WiFi.begin(ssid, password); // Attempt to connect to the Wi-Fi network

 while (WiFi.status() != WL_CONNECTED) { // Wait until the NodeMCU is successfully connected

 delay(1000); // Wait 1 second before rechecking Wi-Fi connection status

 Serial.println("Connecting to WiFi..."); // A message indicating an attempt to connect to Wi-Fi

 }

 Serial.println("Connected to WiFi."); // A message indicating a successful connection

 client.setServer(broker, port); // Connect to the MQTT broker

 client.setCallback(on_message); // Set callback function for incoming messages

 client.connect("NodeMCU_Subscriber"); // Connect to MQTT broker with the name "NodeMCU_Subscriber"

 Serial.println("Connected to MQTT broker."); // Successful connection to MQTT broker

 client.subscribe(topic); // Subscribe to the specified topic

}

void loop() {

 client.loop(); // Start MQTT client loop to receive messages

}

NodeMCU as Subscriber: Python Output

NodeMCU as Subscriber: NodeMCU Output

References and Tutorials

▪ MQTT Broker Introduction

▪ What is MQTT Quality of Service (QoS)

▪ Mosquitto MQTT Broker: Pros/Cons, and Tutorial

▪ Raspberry Pi Publishing MQTT Messages to ESP8266

▪ How to Use MQTT in Python with Paho Client

▪ How to Use the Paho MQTT Client in Python with Examples

▪ Arduino Client for MQTT

▪ Arduino PubSubClient - MQTT Client Library

https://elearning.easygenerator.com/1f6c850c-50f4-4a6e-880a-66cb2ca54a86/#/
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://www.emqx.com/en/blog/mosquitto-mqtt-broker-pros-cons-tutorial-and-modern-alternatives
https://randomnerdtutorials.com/raspberry-pi-publishing-mqtt-messages-to-esp8266/
https://www.emqx.com/en/blog/how-to-use-mqtt-in-python
https://cedalo.com/blog/configuring-paho-mqtt-python-client-with-examples/
https://pubsubclient.knolleary.net/
https://www.hivemq.com/article/mqtt-client-library-encyclopedia-arduino-pubsubclient/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

