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Abstract False discrimination between earthquakes
and quarry blasts may lead to an unrealistic charac-
terization of the natural seismicity of a region. The
similarity in seismograms between earthquakes and
quarry blasts is the primary reason for incorrect dis-
crimination. Therefore, in this paper, we propose a
discriminative algorithm utilizing wavelet filter bank
to extract unique features between earthquakes and
quarry blasts. The discriminative features are found to
be in the first five seconds after the onset time. The
proposed algorithm is divided into two stages: first,
wavelet filter bank extracts the features of the seis-
mic signals; then, support vector machine classifies
the event based on these extracted features. The pro-
posed algorithm achieves a discrimination accuracy of
98.5% when applied to 900 earthquakes and quarry
blast waveforms.
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1 Introduction

Earthquake catalogs usually include a complex mix-
ture of natural and artifacts events. In such catalogs,
artifacts can cause variations in seismicity patterns
due to misinterpretation as precursors to past or
upcoming main shocks. Hence, before any statisti-
cal analysis of the seismicity, artificial contaminations
must be explored and discriminated to extract mean-
ingful information (Mousavi 2017). The main chal-
lenge of the discrimination between earthquakes and
quarry blasts is the similarity in waveforms. Manual
discrimination is a time-consuming process, and in
some cases, it becomes unreliable. Therefore, an auto-
matic discrimination algorithm with high accuracy is
mandatory.

Many techniques are proposed to discriminate
between earthquakes and quarry blasts automatically.
Taylor et al. (1989) adopted the ratio between the max-
imum amplitudes of the secondary and the primary
waves

(
R(S/P )

)
, while Kuyuk et al. (2014) utilized

Linear Discriminant Function (LDF) and Quadratic
Discriminant Function (QDF) as a basis for classifi-
cation. K-mean and Gaussian mixture are proposed as
a classifier instead of LDF and QDF by Kuyuk et al.
(2012). Moreover, Gendron et al. (2000) proposed
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discrimination based on the time-frequency contents
of P-wave and S-wave extracted by discrete wavelet
transform (DWT). Gendron et al. (2000) adopted the
posterior probability of the time difference between
P- and S-waves. The discrimination was accomplished
by computing the posterior probability of these fea-
tures for every class, then choosing the maximum
posterior.

Moreover, time-frequency content analysis of the
seismic events was adopted to extract distinctive dis-
crimination features. In Horasan et al. (2009), the
complexity (CX) versus the spectral ratio (SR) of the
seismogram methodology was estimated as basic fea-
tures for classification. A new figure of merit defined
as the product of the (R(S/P )), the ratio of complex-
ity and the spectral ratio was proposed in Kekovalı
et al. (2012), where it was named the power of the
event. While short-time Fourier transform (STFT) was
utilized to support discrimination based on the com-
plexity and spectral ratio (Yılmaz et al. 2013). Fur-
thermore, in Farahani and Zaré (2014), the proportion
between the spectrums of the horizontal and the ver-
tical components was applied as an indicator of the
discrimination, given the same station.

On the other hand, artificial networks were pro-
posed to discriminate between earthquakes and quarry
blasts. In Orlic and Loncaric (2010), a genetic algo-
rithm (GA) was used as an optimization tool for a
classifier utilizing the (R(S/P )), complexity, and spec-
tral ratio parameters. In Akhouayri et al. (2015), a
fuzzy-based algorithmwas proposed to extract the fea-
tures of the seismic data. Meanwhile, Yıldırım E et al.
(2011) took the advantage of the feed-forward neural
network and adaptive neural fuzzy. In Farahani (2015),
the neuro-fuzzy inference system (ANFIS) was uti-
lized. Statistical time series classifier based on hidden
Markov model tool was introduced in Quang et al.
(2015) and Beyreuther et al. (2012). In Lyubushin
et al. (2013), multi-fractal singularity spectral was
used to extract some features which can character-
ize earthquakes and quarry blasts, while the authors
in Kortström et al. (2016) adopted support vector
machine (SVM) for discrimination. They filtered the
seismic wave via many narrow band pass filters and
divided them into four phase windows: P, Pcoda, S,
and Scoda, then computed a short-term average (STA)
to use them for training the SVM.

Most of the previous algorithms utilize certain fea-
tures such as (R(S/P )), the spectral ratio, complexity,

S-wave time, and STFT. On the contrary, this paper
proposes to extract unique features employing wavelet
filter bank. The proposed algorithm depends on the
energy distribution of the seismic signal on the time-
frequency representation. The wavelet filter bank is
utilized to obtain the frequency contents in a specific
high-resolution time window; then, unique features
are extracted and employed for the discrimination pro-
cess. Particle swarm optimization (PSO) is utilized to
determine the optimum detail/approximation and the
optimum time window, in which unique discrimina-
tion features are found, after the onset time. Next,
SVM is used as a classifier between earthquakes and
quarry blasts. The rest of the paper is organized as
follows. In Section 2, the proposed algorithm is illus-
trated. Section 3 shows the results and analysis. The
discussion is presented in Section 4. Finally, Section 5
concludes the paper.

2 The proposed algorithm

In the proposed algorithm, we employ the wavelet
filter bank to reach a high resolution in the time-
frequency representation. Wavelet filter bank is a pow-
erful tool to get the frequency contents for a particular
time window. The wavelet transform performs con-
stant relative bandwidth frequency analysis because
it uses a short-time window for high frequencies and
a long-time window for low frequencies. This fea-
ture is one of the benefits of using wavelet transform
over STFT because the signal is analyzed under dif-
ferent resolutions at different frequencies so wavelet
can obtain better representation for the signals with
low-frequency (approximation) and high-frequency
(detail) contents (Mousavi and Langston 2016, 2017).
Therefore, a wavelet filter bank is used to obtain the
j th detail and approximation for the recorded seismic
signals. Afterwards, the PSO is applied to choose the
best detail or approximation which contains unique
features that can distinguish between earthquakes and
quarry blasts. Finally, SVM is utilized as a classifier
to classify the waveforms according to these extracted
features.

Wavelet filter bank divides the input signal into sev-
eral frequency bands (j) (Strang and Nguyen 1996).
The input signal, x, passes through the wavelet filter
bank and is scaled to reach the j th detail (high fre-
quency) and j th approximation (low frequency). The
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frequency content is halved at each stage. For instance,
in our dataset, the sampling rate is 100 samples per
second. Therefore; the general equation of the fre-
quency band of the j th stage can be defined as follows
(Percival and Walden 2006) :

F

2j+1
≤ |f | ≤ F

2j
j = 1, 2, 3, ... (1)

In Eq. 1, F is 50 Hz and j is the stage number. Scaling
and wavelet coefficients for the j th stage are shown in
Eqs. 2 and 3, respectively (Percival andWalden 2006).

vj,t =
L−1∑

l=0

gj,l x2j (t+1)−lmodL (2)

wj,t =
L−1∑

l=0

hj,l x2j (t+1)−lmodL (3)

In both Eqs. 2 and 3, t = 0, ..., L/2 − 1 mean-
while g and h are quadrature mirror filters, and L

is the filter width while l varies from 0 to L − 1.
The scaling filter g is a quadrature mirror filter that
is related to the wavelet filter h through the equation,
gl = (−1)l+1hL−1−l and the inverse relationship is
hl = (−1)lgL−1−l . Meanwhile, x represents the input
signal. Also, the approximation and detail for the j th
stage are defined in Eqs. 4 and 5, respectively (Strang
and Nguyen 1996).

Aj =
L−1∑

l=0

go
j,l vj,(t+1)modL (4)

Dj =
L−1∑

l=0

ho
j,l wj,(t+1)modL (5)

In Eqs. 4 and 5, go and ho are g and h periodized
with length L, respectively (Percival and Walden
2006). Periodized means creating an infinite length
signal from a finite length signal. In other words, peri-
odized is replicating a finite length signal over and
over to create an infinite length periodic version. A
detailed definition of the periodized filters is presented
by Percival in Percival and Walden (2006).

The proposed algorithm is based on the hypothe-
sis that earthquake and quarry blasts have different
spectral characteristics. This phenomenon can be due
to different source mechanisms of earthquakes and
quarry blasts (Mousavi et al. 2016) . Our objective is
to find unique features in earthquakes not shared with

quarry blasts or vice versa. Our intuition that these fea-
tures are in a certain period, this period starts at the
onset time (t0) and ends at a certain time which we
call (t2). Most of the previously published approaches
depend on extracting different features from low and
high frequencies (Horasan et al. 2009; Kekovalı et al.
2012; Yılmaz et al. 2013; Farahani and Zaré 2014). In
this paper, for better representation of the seismic sig-
nals, we define a new parameter referred to as wavelet
discriminator (WD), Eq. 6, to obtain the frequency
contents in a specific time window with high resolu-
tion. Six stages of the wavelet filter bank are used to
extract more features from allowable frequency range.
In Eq. 6, Qj,k represents the j th detail or approxi-
mation according to the value of k, detail in case of
k equals one or approximation when k equals 0, and
Qi,n represents the ith detail or approximation accord-
ing to the value of n, detail in case of n equals one or
approximation when n equals 0.

Meanwhile, WD represents the ratio between
(1) the integral of the square Q for j th stage in
the time window [the onset time (t0) − t1] and
(2) the integral of the square Q for ith stage in
the time window [t1 − t2]. Also, Q belongs to
{A1, A2, A3, A4, A5, A6, D1, D2, D3, D4, D5, D6};
A and D represent the approximation and detail,
respectively. We anticipate that some of the discrim-
inating features are located in low frequency while
the others are located in high frequency. Therefore,
we expect the stage number j represents the high-
frequency band, while the stage number i represents
the low-frequency band or vice versa. However, we
do not know from which stage we should pick the Q.
Moreover, we do not know the optimum limits of the
time windows t1 and t2. Therefore, an optimization
process is required.

WD =
∫ t2
t1

Q2
j,k

∫ t1
t0

Q2
i,n

Q ∈ {A1, A2, A3, A4, A5, A6, D1,D2, D3,D4,D5, D6} (6)

Six parameters have to be obtained; these param-
eters are shown in Table 1. The parameters are the
two-time limits t1 and t2, k for the numerator, n for
the denominator, the stage level of the numerator
(j) and denominator (i). Optimum values for these
parameters are needed to reach a robust discrimination
technique. Therefore, we utilize particle swarm opti-
mization (PSO) to obtain the optimum parameters for
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Table 1 Input parameters of PSO

Parameters Description Constraints

t1 Time limit 1 N/A

t2 Time limit 2 N/A

j Stage number for From 1 to 6

WD numerator

i Stage number for From 1 to 6

WD denominator

k j th Det.or If k=1, Qj,k is Det.

Approx If k=0, then Qj,k is Approx

n ith Det.or If n=1, Qi,n is Det.

Approx If n=0, then Qi,n is Approx

the proposed algorithm. The objective function for the
PSO of training set is to minimize the number of mis-
classified waveforms for earthquakes and quarry blasts.

PSO (Shi and Eberhart 1999) is widely used tech-
nique in many applications due to its advantages
including simplicity, easy implementation and fast
searching speed (Kennedy 2011; Hassan et al. 2005;
Selvi and Umarani 2010; Bai 2010). Therefore, we
propose to use PSO to find the optimum values for
these parameters. The basic PSO algorithm consists of
three steps generating positions of particles and veloc-
ities, velocity update, and position update (Selvi and
Umarani 2010). Each particle represents a possible
solution to the problem that changes its position from
one iteration to another based on velocity updates.
First, the positions, xpi , and velocities, vi , of the initial
swarm of particles are randomly generated. The PSO
consists of many particles which form a swarm, design
space. At each step, each particle updates its velocity
and distance according to Eqs. 7 and 8, respectively
(Kennedy 2011).

vi =vi+c1 ∗ rand ∗ (Pi−xpi)+c2 ∗ rand ∗ (Pglobal−xpi) (7)

xpi = xpi + vi (8)

In Eq. 8, the P i represents the best previous posi-
tion and the global best position is stored in Pglobal .
The velocity update formula includes some random
parameters (rand) to ensure excellent coverage of the

design space. These random parameters are uniformly
distributed. According to Shi and Eberhart (1999), the
original PSO algorithm used the value of two for both
constants c1 and c2. Once the PSO chooses the opti-
mum parameter t1, t2, j , i, n, and k, these parameters
are set to be the input parameters for the setup of the
wavelet filter bank.

Finally, we propose to use support vector machine
(SVM) as a classification tool to discriminate between
earthquakes and quarry blasts. SVM is one of the
standard tools for machine learning and data mining
and a popular tool for a wide range of supervised
pattern recognition problems (Cristianini and Shawe-
Taylor 2000; Muller et al. 2001; Catanzaro et al.
2008; Schölkopf et al. 1999). SVM gives an unam-
biguous result for an ambiguous problem, which can
easily be implemented into an automatic process. The
SVM algorithm chooses the support vectors, points
in the dataset, which can be used to classify the
objects. SVM searches for the best support vector
which reduces the misclassified points. In the pro-
posed algorithm, we train the SVM with a linear
kernel. The linear kernel is chosen because it is easier
in implementation and faster than the nonlinear kernel
(Tong and Chang 2001), given that the performance
of the classifier will maintain the same result for the
nonlinear kernel.

To evaluate SVM, we test the proposed algorithm
using the dataset in Lyubushin et al. (2013). This
dataset contains 143 waveforms: 75 for quarry blasts
and 68 for earthquakes that should be discriminated
with high accuracy. For the training dataset, we ran-
domly select 30 waveforms: 15 waveforms for earth-
quakes and 15 waveforms for quarry blasts. These
30 waveforms represent 20% of the total dataset in
Lyubushin et al. (2013). The two attributes of SVM are
log10(WD) and log10(numerator of WD). These
two attributes are used for training since they give the
best discrimination accuracy between earthquakes and
quarry blasts. Linear discriminant function for SVM is
shown in Eq. 9 (Muller et al. 2001; Chi et al. 2008).

f (U) = wT U + b (9)

In Eq. 9, w, b, and U are the weight vector,
bias, and input, respectively. The parameters w and b

control the classification decision to specify the hyper-
plane of SVM. In the proposed algorithm, SVM aims
to distinguish between the earthquakes and quarry
blasts by minimizing the number of misclassified
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events. The sign of the weight is positive for support
vectors belonging to the first group and negative for
the second group (i.e., earthquakes and quarry blasts
groups). SVM finds its optimum parameters, w, and
b, by minimizing the objective function in Eq. 10 (Chi
et al. 2008).

lossf unction = 0.5 ∗ ||w||2 + C ∗
n∑

i=1

H(yif (Ui)), (10)

where C is regularization parameter (complexity con-
stant) aies, and lower values create harder boundaries.
SVM searches for a hyperplane with the largest min-
imum margin which can accurately separate many
instances; this approach can be controlled by param-
eter C. The number of misclassified events at dif-
ferent C values is shown in Eq. 11. and n is the
number of points in the training dataset. Meanwhile,
H(yif (U)) is the loss for the training patterns xi ,
defined by H(index) = max(0, 1 − index) (Chi
et al. 2008), where yi is the desired output. In our
case, H(yif (Ui)) = max(0, 1− yi(W

T Ui + b)). For
SVM, we use soft-margin SVM which the C parame-
ter control the boundaries of this margin, where higher
C values allow for softer boundary.

Misclassif ied wavef orms =
{
3, C =0.1, 0.2, 0.3, 0.4
2, C =0.5, 0.6, .., 15

(11)

In Eq. 11,C varies with fixed step size of 0.1. Accord-
ing to Eq. 11, the optimal valueC is any value above 0.5.
Therefore, we set the C parameter to its default value 1.

In our case, we use a linear kernel SVM as a clas-
sifier which can be modelled as shown in Eq. 12.

Out = Slope ∗ Inp + b (12)

In Eq. 12, Inp andOut are the input and theoutput of
the linear classifier, respectively. According to SVM
linear classifier, the value of Slope and b are esti-
mated. The pseudo-code for the proposed linear SVM
is shown in Table 2. We multiply the first attribute,
log10(numerator of WD), by the Slope and subtract
the second attribute, log10(WD), from the result of
this product. The final decision of the system is one in
case of an earthquake and a zero otherwise.

Figure 1 shows a flowchart summarizes the proce-
dure of the proposed algorithm. According to Fig. 1,
in the first iteration of PSO, the six parameters are
randomly initialized, and then the WD values are
obtained. Two attributes are fed to the SVM classifier:

Table 2 Pseudo-code for proposed linear support vector
machine as a classifier

attribute1 = log10(numeratorof WD);
attribute2 = log10(WD);
//Perform linear SVM

Yout = A ∗ attribute1 + B;
PreDecision = Yout − attribute2;
IF P reDecision <= 0

Decision = 1;
Else

Decision = 0;
End IF

log10(WD) and log10(numerator of WD). After-
wards, the cost function is determined, the number
of misclassified waveforms. For each iteration, the
six parameters are updated according to PSO scheme;
then, the newly updated parameters are used to obtain
the cost function. If the cost function is less than
the global minimum, the current parameters will be
considered as the optimum parameters. Meanwhile,
the cost function will reach 0 if the number of mis-
classified waveforms is 0. If this condition happens,
the PSO will be stopped, but if this condition did
not meet, the process would continue till the number
of iterations reaches 1000, and the program will be
halted.

3 Results and analysis

3.1 Description of dataset

In Egypt, Aswan is a high-activity region regard-
ing the quarry blasts. The Egyptian National Seis-
mic Network (ENSN) takes responsibility for mon-
itoring, recording, and analyzing seismic data. In
2016, ENSN operated 69 seismic stations distributed
all over Egypt to detect the occurrence of seismic
ground motion. These seismic stations are gathered
into groups according to their locations. For instance,
Aswan region is a vital area because of the high
dam and Nasser Lake. Therefore, Aswan sub-network
consists of eleven seismic stations to detect and rec-
ognize quarry blasts for the safety of the region. We
train and test the proposed algorithm using the dataset
in Lyubushin et al. (2013). This dataset contains 68
earthquake waveforms and 75 quarry blasts wave-
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Fig. 1 Flowchart of the
PSO procedure

Start

Set the PSO parameters

 

Calculating the WD for all events 

according to previous parameters

Classifying all events (earthquake / 

quarry blast) 

According to the classifier  

If the number of miss-classified 

events is zero or the number of 

iterations =1000

end

If the number of miss-classified 

less than the global minimum 

Update the optimum 

parameters and the global 

minimum

Update the new velocity and 

distance for each particle in 

the swarm

yes

yes

No

No
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forms recorded by Aswan sub-network from 2004 to
2007. At that time, seismic stations were equipped
with sensors which have vertical component only.
Figure 2 shows the locations of the 11 seismic sta-
tions for Aswan sub-network and its corresponding
longitude and latitude. In ENSN, each waveform of
the events passes through several expert seismologists
to decide either it is an earthquake or it is a quarry
blast. This process takes hours, days, or maybe weeks.
Therefore, we need a reliable discrimination algorithm
to automatically act like the expert seismologists in
just a few seconds.

3.2 First dataset discrimination results

The proposed algorithm is applied to the above-
described dataset to find the optimum parameters for

high discrimination accuracy. As a result, the optimum
values for the six parameters mentioned in Table 1
are shown in Table 3. According to Table 3, the fea-
tures that are required for an efficient discrimination
exist in the first 5 s after the onset time. These features
are found in details numbers 1 and 5 which represent
the high-frequency band and the low-frequency band,
respectively. According to Eq. 1, detail number 1 con-
tains the frequency band of 12.5–25 Hz, while detail
number 5 represents the frequency band of 0.7813–
1.5625 Hz. These results complywith our hypothesis that
there are some features in the high frequency and oth-
ers in the low frequency in a certain timewindow that can
discriminate between earthquakes and quarry blasts.

The WD equation can be written in the final for-
mula as shown in Eq. 13, where Q1,1 represents the
first detail of wavelet filter bank, while Q1,5 repre-
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Fig. 2 Location of Aswan sub-network and its seismic stations

Table 3 The optimum input parameter values obtained by PSO.

Parameters Values

t1 3.5 s

t2 5 s

j 1

i 5

k 1 (detail)

n 1 (detail)

sents the fifth detail of wavelet filter bank and t0 is the
onset time of the event.

WD =
∫ 5s
3.5s Q2

1,1
∫ 3.5s
t0

Q2
5,1

(13)

Figures 3 and 4 show an example of the quarry blast
and earthquake, respectively, with a similar shape.
Figures 3a and 4a show a quarry blast and earthquake
events (i.e., waveforms) with a similar shape in the
time domain, respectively. The squared detail num-
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Fig. 3 a Quarry blast. b The detail number 1 of this quarry blast. c The detail number 5 of this quarry blast

ber 1 and squared detail number 5 of the quarry blast
are shown in Fig. 3b and c, respectively. Meanwhile,
the squared detail number 1 and squared detail num-
ber 5 of the earthquake are shown in Fig. 4b and c,

respectively. For the same earthquake and quarry blast,
Figs. 5 and 6 show detail number 1 and detail number
5 in the first 5 s after the onset time for quarry blast
and earthquake waveforms, respectively.
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Fig. 4 a Earthquake. b The detail number 1 of this earthquake. c The detail number 5 of this earthquake
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The left-hand side of Fig. 5 shows the squared
detail number 5 of the quarry blast in a time window
of 3.5 s starting from the onset time, while the right-
hand side of Fig. 5 shows the squared detail number 1

for the same quarry blast from 3.5 to 5 s from the onset
time. On the other hand, the time window of 3.5 s start-
ing from the onset time for the detail number 5 of the
earthquake is shown on the left-hand side of Fig. 6,
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earthquake, in Fig. 4, from 3.5 s after onset to 5 s after the onset time
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while the right-hand side of Fig. 6 represents the detail
number 1 of the same earthquake from 3.5 to 5 s
from the onset time. Furthermore, the integral value
of the wavelet detail on the right-hand side for both
Figs. 5 and 6 represent the numerator of WD, while
the integral value of the wavelet detail on the left-hand
side for both Figs. 5 and 6 represent the denomina-
tor of WD. Then, the WD values for quarry blast and
earthquake can be obtained according to Eq. 13 from
Figs. 5 and 6, respectively.

The major strength of the proposed algorithm is its
ability to determine the energy of the seismic signal in
a specific time window in a particular frequency band.
We calculate this power by calculating the square
value of detail numbers 5 and 1 in a time window
of 5 s starting from the onset time. This segment
contains features that can discriminate between earth-
quakes and quarry blasts. It appears that the energy of
the quarry blasts for low-frequency content between
the intervals from the onset time to 3.5 s is higher
than the energy for the earthquake in the same inter-
val. For example, the numerator value of WD for the
quarry blast in Fig. 3a is 1420 which can be deter-
mined from the right-hand side of Fig. 5, while the
denominator value of WD for the same quarry blast
is 153398 which can be calculated from the left-hand
side of Fig. 5. Also, the numerator and denominator

of WD for the earthquake in Fig. 4 can be calcu-
lated from the right- and left-hand sides of Fig. 6,
respectively. The numerator and denominator of WD

for this earthquake are 578 and 11440, respectively.
Hence, the values of WD for quarry blast and earth-
quake are 0.0092 and 0.051, respectively. Therefore,
the proposed algorithm can easily identify the earth-
quake from the quarry blast, according to the value of
WD. To make it clear, we calculate the average values
for numerator and denominator of WD for all wave-
forms. For all waveforms of quarry blasts, the average
value for the numerator of WD is 1223.9, while the
average value for the denominator of WD is 10681.7.
For all waveforms of earthquakes, the average value
for the numerator of WD is 1500.4, while the average
value for the denominator of WD is 150624.

After obtaining the WD values for all the wave-
forms in the dataset (i.e., 143 waveforms), we calcu-
late the logarithm of WD for all waveforms and plot it
versus the logarithm of the numerator ofWD. The rea-
son for selecting these two parameters, the logarithm
of WD and the logarithm of the numerator of WD, is
that we find they give the best discrimination accuracy
between earthquakes and quarry blasts. In Fig. 7, the
red circles represent quarry blasts while blue squares
are the earthquakes. On the other hand, the misclas-
sified waveforms appear as black stars in Fig. 7. By
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Fig. 7 Classification result according to the proposed algorithm
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Table 4 The accuracy of different mother wavelet types and
order

Mother wavelet type Order Accuracy

Daubechies From 2 to 7 85 to 89%

Daubechies 8 98.5%

Daubechies From 9 to 15 80 to 85%

Daubechies From 16 to 45 < 80%

Haar Haar 83%

Sym From 1 to 45 80 to 89%

Bior1 .1, .3, and .5 75 to 80%

Bior2 All orders < 80%

Bior3 All orders < 80%

Bior4 .4 < 80%

Bior5 .5 < 80%

Bior6 .8 < 80%

using the SVM as a classifier, the discrimination accu-
racy is 98.5% and 98.6% for earthquakes and quarry
blasts, respectively. In the proposed algorithm, we try

several mother wavelets to reach maximum accuracy,
and the best mother wavelet which gives the best dis-
criminating features is Daubechies 8. Table 4 shows
the accuracy of discrimination between earthquakes
and quarry blasts using different mother Wavelets.

3.3 Testing dataset

We gathered most of the events which happened
during 2014 in Aswan sub-network. Seven hundred
fifty-seven waveforms from the 11 stations in Aswan
sub-network are collected. This dataset consists of
574 waveforms for earthquakes and 183 waveforms
are for quarry blasts. We choose Z-direction compo-
nent because each station in the first dataset, from
2004 to 2007, was equipped by seismometer which
has only one channel, vertical channel. In 2014, the
seismometer used in the stations has three channels.
However, to be more consistent and to keep the same
features extracted from the training dataset, we use
only the Z-component. From each station, we gathered

Fig. 8 Location of testing dataset waveforms and the stations of Aswan sub-network



J Seismol

1 2 3 4 5 6 7 8 9
-7

-6

-5

-4

-3

-2

-1

0

1

2

log10(numerator(WD))

)
D

W
(

0
1

g
ol

Support Vector Machine (SVM)

Quarry blasts

Earthquakes

Miss-classified

Fig. 9 Classification result of the test dataset using SVM

68 waveforms except the NGAL station; we gathered
77 waveforms. The locations of the events and sta-
tions are shown in Fig. 8. We employ the proposed
algorithm to classify this dataset. For these events, the
classification process cannot be reached using loca-
tion and depth because both of location and depth
of earthquakes and quarry blasts are similar. For this
dataset, the depth range varies from 1 to 8 km while
the magnitude, ML, varies from 0.8 to 4.2 ML. The
WD values for all waveforms are determined and plot-
ted versus the numerator of the WD. Then, the SVM
classifier is applied to classify the earthquakes and
quarry blasts. As a result, the discrimination accuracy
of the proposed algorithm is 97.9% for classification
of earthquakes (i.e., 12 waveforms for earthquakes
are misclassified) and to 99.5% for classification of
quarry blasts (i.e., 1 waveform for quarry blast is
misclassified). Figure 9 shows the logarithm of WD

versus the logarithm of WD numerator. In Fig. 9,
quarry blasts are the red circles, and earthquakes are
the blue squares while the black stars represent the
misclassified waveforms. According to these results,
there are several explosions that have occurred in the
Aswan region. These explosions may be a quarry blast
or any other mining activities and should be reported
to the government. The proposed algorithm is an auto-
matic discrimination tool which releases an alarm

once a quarry blast is detected. The final proposed
algorithm is shown in Fig. 10.

4 Discussion

In the proposed algorithm, for quarry blasts, the first
3.5 s after the onset time has larger energy than earth-
quakes, and this appears in the WD numerator values.
However, once we get close to the S-wave, the energy
of the earthquakes becomes larger than the quarry
blasts. This phenomenon is reflected in the denom-
inator of the WD which presents the energy stored
in the interval from 3.5 to 5 s after the onset time.
Furthermore, for quarry blasts, the low frequency is
dominated for the first 3.5 s after the onset time.
Meanwhile, for earthquakes, the low frequency is
dominated in the interval from 3.5 to 5 s after the onset
time. The results matched the fact that the energy of
P-wave is greater than that of the S-wave for quarry
blasts and, the energy of S-wave is greater than that of
the P-wave for earthquakes.

The final proposed algorithm, shown in Fig. 10,
utilizes wavelet filter bank and SVM classifier. The
proposed algorithm achieves an accuracy of 98.3%.
Table 5 compares between the proposed algorithm
and previous algorithms (Horasan et al. 2009; Yılmaz
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et al. 2013; Lyubushin et al. 2013) when we apply
them to our dataset. In Table 5, the accuracy and the
number of waveforms are reported for each work.
As observed, the proposed algorithm outperforms the
other algorithms.

Moreover, the proposed algorithm is flexible and
fully automated since the parameters are set automat-
ically in the small initial training phase. For instance,
the training dataset is 30 waveforms from a total of
143 waveforms. For Aswan region, to obtain the opti-
mum parameters of the proposed algorithm, the train-
ing process including PSO process consumed time of

Table 5 The accuracy of different mother wavelet types and
order

Method Waveforms Accuracy

number

Horasan et al. (2009) 900 55%

Yılmaz et al. (2013) 900 77%

Lyubushin et al. (2013) 900 96%

This work 900 98.3%

7708 s using Intel Processor Core i7-3612QM CPU
@ 2.10 GHz, RAM of 8 Gb, and Windows 10, 64-bit
operating system. To further evaluate the performance
of the proposed algorithm, we obtain the confusion
matrix for all the tested waveforms (i.e., 870 wave-
forms excluding the training dataset which contains
30 waveforms). The confusion matrix can be found in
Eq. 14.

Confusion matrix =
[
242 2
13 613

]
(14)

In the proposed algorithm, the true positive repre-
sents the correct classification of quarry blasts while
the true negative represents the correct classification
of earthquakes. Also, the false positive represents mis-
classification of earthquakes while the false negative
represents misclassification of quarry blasts. From
Eq. 14, the true positive (TP) is equal to 242 wave-
forms while the true negative (TN) is equal to 613
waveforms; the false positive (FP) is equal to 13 wave-
forms while the false negative (FN) is equal to 2 wave-
forms. Then, we obtain the sensitivity and specificity
as shown in Eqs. 15 and 16, respectively.

Sensitivity = TP

TP+FN
(15)

Table 6 Confusion matrix, sensitivity, and specificity

Parameter Value

True positive (TP) 242

True negative (TN) 613

False positive (FP) 13

True negative (FN) 2

Sensitivity (
TP

TP+FN
) 99.1%

Specificity (
TN

TN+FP
) 97.9%
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Specificity = TN

TN+FP
(16)

According to Eqs. 14, 15, and 16, the sensitivity and
specificity values are 99.1% and 97.9%, respectively
as shown in Table 6.

5 Conclusion

Quarry blasts and earthquake signals are similar in
their shape and are difficult to be distinguished. There
are several drawbacks to misclassify quarry blast as
an earthquake. For example, some analysis and mod-
els, such as crustal model, will be incorrect. This work
proposes a discrimination algorithm utilizes a wavelet
filter bank to extract unique features of quarry blasts
and earthquakes signals. This is accomplished by cal-
culating the squared detail number 5 and squared
detail number 1 in a time window of 5 s starting
from the onset time. Choosing detail numbers 1 and
5 as well as selecting the time window length is
done by applying particle swarm optimization (PSO).
Then, the SVM algorithm is used to classify between
earthquakes and quarry blasts automatically based
on the extracted features. The proposed algorithm is
trained using the dataset in Lyubushin et al. (2013);
30 waveforms are used to train the proposed algo-
rithm which represents 20% of the total dataset (i.e.,
15 waveforms for earthquakes and 15 waveforms for
quarry blasts). The accuracy of the proposed algo-
rithm reaches 98.6%. Also, we gathered the most
of the seismic events which happened during 2014
in Aswan sub-network. This dataset consists of 757
waveforms recorded by Egyptian National Seismic
Network (ENSN). After applying the proposed algo-
rithm to this dataset, the proposed algorithm reaches a
discrimination accuracy of 98.5%.
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