PreJoin: An Efficient Trie-based String Similarity Join Algorithm

Karam Gouda
Faculty of Computers & Informatics
Benha University, Benha, Egypt
karam.gouda@fci.bu.edu.eg

Abstract

A string similarity join finds all similar pairs between
two collections of strings. It is an essential operation in
many applications, such as data integration and cleaning,
and has attracted significant attention recently. In this pa-
per, we study string similarity joins with edit-distance con-
straints. Recently, a Trie-based similarity Join framework
is proposed [3]. Existing Trie-based Join algorithms have
shown that Trie Indexing is more suitable for Similarity Join
on short strings. The main problem with current approaches
is that they generate and maintain lots of candidate prefixes
called active nodes which need to be further removed. With
large edit distance, the number of active nodes becomes
quite large. In this paper, we propose a new Trie-based Join
algorithm called PreJoin, which improves over current Trie-
based Join methods. It efficiently finds all similar string
pairs using a new active-node set generation method, and a
dynamic preorder traversal of the Trie index. Experiments
show that PreJoin is highly efficient for processing short as
well as long strings, and outperforms the state-of-the-art
Trie-based Join approaches by a factor five.

1. Introduction

String data is ubiquitous, and its management has
taken on particular importance in the past few years.
Similarity join has become an essential operation in
many applications, such as data integration and cleaning,
web page detection, and pattern recognition. Similarity
join is also adopted in the industry solutions. A string
similarity join between two sets of strings finds all similar
string pairs from the two sets. For example, consider
two sets of strings {stick, mode, ...} and {stich, make,
... }. We want to find all similar pairs, e.g., (stick, stich
) and (mode, make). Many similarity functions have been
proposed to quantify the similarity between two strings,
such as Jaccard similarity, Cosine similarity, and edit
distance. In this paper, we study string similarity joins with

Metwally Rashad
Faculty of Computers & Informatics
Benha University, Benha, Egypt
metwally.rashad @fci.bu.edu.eg

edit-distance constraints [5]. Edit distance measures the
minimum number of edit operations (insertion, deletion,
and substitution) to transform one string to another. Edit
distance has two distinctive advantages over alternative
distance or similarity measure: (a) it reflects the ordering of
tokens in the string; and (b) it allows non-trivial alignment.
These properties make edit distance a good measure in
many application domains, e.g., to capture typographical
errors for text documents, and to capture similarities for
Homologous proteins or genes.

Previous algorithms for Similarity joins such as Part-
Enum [1], All-Pairs-Ed [4], Ed-Join [2], usually employ a
filter-and-refine framework. In the filter step, they gener-
ate Q-gram signatures for each string and use the signatures
to generate candidate pairs. In the refine step, they verify
the candidate pairs and output the final results. These
approaches have the following disadvantages. Flirstly,
they are inefficient for the data sets with short strings
(the average string length is no larger than 30), since they
cannot select high-quality signatures for short strings, and
thus they may generate a large number of candidate pairs
which need to be further verified. Secondly, they cannot
support dynamic update of data sets. The dynamic update
may change the weights of signatures. Thus the methods
need to reselect signatures, rebuild indexes, and rerun their
algorithms from scratch. F'inally, they involve large index
sizes as there could be large numbers of signatures.

Recently, to address the above-mentioned problems,
a Trie-based similarity Join framework is proposed [3].
In comparison with the filter-and-refine framework, Trie-
based Join can efficiently generate all similar string pairs
without the refine step. As many common prefixes of
strings are shared by the trie structure, the index size
is minimized, and prefix pruning is used to improve
performance. Nevertheless, the main problem of current
Trie-based Join methods is that: At each prefix (trie node),
they generate and maintain lots of candidate prefixes called
active nodes which need to be further removed. With large

edit distance, the number of active nodes becomes quite
large. To overcome this problem, they use many pruning
techniques' to remove false positive prefixes in a subse-
quent phase, consequently more computation overhead is
added. This make the existing approaches inefficient for
processing large data sets with long strings, and higher edit
distance threshold.

In this paper, we propose a new Trie-based similarity
Join approach called PreJoin, which minimizes false can-
didate prefixes. PreJoin uses preorder traversal combined
with an efficient way to generate the actual active nodes.
The new generation method encapsulates the previous
pruning techniques. Thus, the overhead of applying these
pruning techniques is removed. Moreover, the tree traversal
in PreJoin is dynamic, that is, at each node, the next subtrie
to be processed is determined according to an effective
ordering methodology. Extensive experiments show that
our approach is highly efficient for processing short as
well as long strings, and outperforms the state-of-the-art
Trie-based Join approaches by a factor five.

The rest of the paper is organized as follows: Section
2 introduces preliminaries such as problem statement and
the working principle of Trie-based similarity Join. Section
3 presents the PreJoin algorithm. Experimental results are
given in Section 4. Finally, Section 5 concludes the paper.

2. Preliminaries
2.1. Problem Statement

Let X be a finite alphabet of symbols o; (1 <i<|X]). A
string s is an ordered array of symbols drawn from . We
use |s| to denote the length of string s, and ”s[i]” to denote
the i-th character of s, and ”s[1..j]” to denote the prefix
of string from starting of string to its j-th character. Each
string s is also assigned an identifier s.id. The edit distance
between two strings s1 and s, denoted as ed(s1, $2), is the
minimum number of single-character edit operations (i.e.,
insertion, deletion, and substitution) needed to transform
s1 to so. For example, the edit distance between s1 = Jim
Gray and sy = Jim Grey is 1, since s; is transformed
to so with a substitute operation that replace the letter in
position s1[7] with the new letter e.

Given two sets of strings R and &, a similarity
join with edit distance threshold 7 (or edit simi-
larity join [5]) returns pairs of strings from each set,
such that their edit distance is no larger than 7 , i.e.,
{< r,s > ed(r,s) < 7,r € R,s € S§}. For example,

!Pruning technique such as Length Pruning, Single-branch Pruning and
count Pruning

consider the strings s = kaushik chakrab, so = caushik
chakrabar. Suppose threshold 7 = 3, < s1,s9 > is a
similar pair as their edit distance is not larger than 7. In
this paper, for the ease of exposition, we will focus on the
self-join case, i.e., S = R.

Several algorithms have been proposed in the previous
studies to solve the similarity join problem such as Part-
Enum [1], All-Pairs-Ed [4], ED-Join [2] and Trie-PathStack
[3]. Trie-PathStack and our approach PreJoin are Trie-based
methods, whereas other methods follow the filter and refine
framework. Next, we introduce the working principle of the
Trie-based string similarity Join.

2.2. Trie-based String Similarity Join

In this paper, a trie is used to index all strings in the data
set R. Trie is a tree structure where each path from a root
to a leaf represents a string in R, and every node on the
path has a label of a corresponding character in the string.
For instance, Figure 1 shows a trie structure of a sample
data set. String “ebay” has a trie node id of 12, and its
prefix “eb” has a trie node id of 10. Given a trie node n, let
|n| denote its depth, e.g., |"ko”| = 2 (the depth of the root
node is 0).

Note that many strings with the same prefix share the
same ancestor nodes on the trie. Thus, if two prefixes are
not similar, the groups of strings sharing these prefixes
are not similar too. Based on this observation, a pruning
technique called dual subtrie pruning is proposed in [3]. It
works as follow. Given a trie node n and an edit distance
7, another trie node m is called an active node for n if
ed(pn,pm) < T, where p; is the corresponding prefix
of node i. Thus, if a node m is not an active node of a
node n, then m’s descendants will not be similar to n’s
descendants. For example, consider the trie in Figure 1 and
suppose 7 = 1. The set appears next to each node is its
active-node set, i.e., the set of all its active nodes. Since
”ko” is not an active node of ”b”, then all the strings with
prefix “’ko”, i.e., strings with id s5 and sg in the data set, are
not similar to the strings with prefix ”b”, i.e., strings with
id so, s4 and s7.

In [3], J. Feng, et al. proposed several algorithms
to traverse the trie structure to find similar string pairs
using dual subtrie pruning. They also introduced different
pruning techniques to improve performance. Trie-based
similarity join works as follows. For each encountered node
n in the traversal, it computes its active-node set denoted
A,. If n is a leaf node, i.e., it represents a string s € R,
then for every leaf node s; € A,, <s,s;> is a similar
string pair. Active-node sets are computed incrementally

{0,1,2,5,9,10,13}

{1,2,5,6,9}
{1,2,3,4,5,6,11}

{2,3,4,7}

(@)

{4,11,12}

{15,16,17}

A sample data set

{0.1.9.13.14} SID Strings
G S1 ba
14 {13,14,15} =2 bag
0 3 ebay
{14,15,16,17}) bay
S5 kobe
17 S6 koby
s7 beagy

{15,16,17}

(b)

Figure 1. A sample data set and its trie-based Index.

using a method called ICAN [6] (Incrementally Computing
Active Nodes) as follows. Initially, the trie root r represents
an empty string €, and its corresponding active-node set
A, includes all trie nodes m with depths no larger than
7. Suppose the active-node set .4, of a given node n is
computed. The algorithm computes the active-node set
of each n’s child from the active-node set A,,. The time
complexity of computing A, from its parent’s active-node
set A, is O(7.|A.|), since each active node only can be
computed from its ancestors within 7 steps.

Trie-Traverse is a preorder traversal method introduced
in [3] as a basic Trie-based similarity Join algorithm. It
first constructs a trie index for all strings in R. It then
traverses the trie in preorder, and compute active-node
set A, of a node ¢ based on its parent’s active-node set
Ap. Preorder traversal guarantees that, for each node,
its parent’s active-node set is computed before its own
active-node set. The pseudo-code of Trie-traverse is given
in Figure 2. Since Trie-Traverse visits each node in the
trie, hence, the time complexity of Trie-Traverse is given
as O(7.|Arl|), where |Ar| = > |Ac|. Figure 1
shows the active-node sets computed in the preorder traver-
sal. The arrows in the figure show the order of this traversal.

The major challenge facing Trie-based similarity Join is
when 7 is large. The higher the edit-distance threshold 7,
the larger the sizes of active-node sets. Moreover, when R
is large and consists of long strings, the corresponding trie
becomes very large. The main objective of our research
is to scale up Trie-based similarity Join on long strings.
While a different traversal method called Trie-PathStack
has been introduced in [3] to speed up Trie-based Join, here
we present a new method called PreJoin, which uses the pre-

Algorithm: Trie-Traverse(R,T)

Input: R: a collection of strings;

7: edit-distance threshold.
Output: P = {(s € R,t € R) : ed(s,t) < T}.
T =new Trie(R);
Let r denote the root of Trie T ;
A= {n : for each trie node n, s.t., |n| < 7};
for each child node of r, ¢ do

P U= findSimilar Pair(c,r, A);

6.Function findSimilar Pair(c, p, A,)
7. A, =calcActiveNode(c, Ay);
8. Pruning(A.);
9. if cis aleaf node then

gD~

10. P. = outputSimilar Pair(c, A.);
11. for each child node of ¢, d do
12. P. U= findSimilarPair(d, c, A.);

12.Function outputSimilar Pair(n, A,)
13. for each leaf node [€ A,,(n #) do
14, P,={(n,0)};

Figure 2. Trie-Traverse algorithm

order traversal combined with a new active-node generation
method to optimize the active-node sets’ sizes.

3. PreJoin Algorithm

In Trie-based similarity Join approaches, the active node
generation method ICAN has to generate active nodes in
a separate phase (e.g., line 7 in Figure 2). Many active

Algorithm: PreJoin (R, 7)

Input: R: a collection of strings;
7: edit-distance threshold.
Output: P = {(s € R,t € R) : ed(s,t) < 7}.

1. T =new Trie(R);
2. Pre_Traverse(root);
3.Procedure Pre_Traverse(t)
4. impose an order on ¢ children;
let CNy = {nq,...,ny} denote children of ¢;
for each n; do
if n; is EOS then Out_Similar(n;, C Ny, Ay, ,4,7);
if n; is a leaf then continue;
9. Gen_ActiveNode(n;,CNy, Ay, ,1,T);
10. Pre_Traverse(n;);
11.Function Gen_ActiveNode(n;, C Ny, Ap,, i, T)
12. for each node m € A, at distance d do
13. if n§ == m¢° then Push_down(n;,m,d,,1);
14. else Push_down(n;, m,d,,0);
/* nj, 7 > 4 are also active nodes to n; with distance 1 */
15. for each n;, j > i do Push_down(n;,n;,1,7,0);

e

Figure 3. PredJoin Algorithm

nodes are false candidates and need to be removed in a
subsequent pruning phase (e.g., line 8 in Figure 2). The
computation overhead caused by these two phases is the
main reason of why the current Trie-based similarity Join is
not the best choice on long strings. Here, we devise a new
generation method different from ICAN, which produces
the actual active nodes, and therefore we do not need the
pruning phase. This will scale Trie-based Join framework
on long strings.

Combining the trie preorder traversal with the new gen-
eration method, a new algorithm called PreJoin is devel-
oped. Figure 3 outlines PreJoin Algorithm. It is illustrated
as follows. Given a data set R, each string s € R is in-
serted into the trie according to the data set order. Recall
that each trie leaf represents a string in the data set. In-
termediate nodes may also represent data strings which are
contained by other strings. These nodes are identified by
the logical variable EOS (stand for End Of String). PreJoin
visits nodes in preorder as Trie-Traverse. However, PreJoin
differs from Trie-Traverse in that: First, in addition to con-
structing the active-node set for the next child to be visited
as in Trie-Traverse, it also constructs the active-node sets
for all its siblings. Thus, active-node set of each sibling
will be available when reaching that sibling in the traversal.
Second, PreJoin does not follow the order imposed by the
trie structure during traversal, it instead re-orders the sib-

lings virtually, to decide which subtrie to be traversed next.
Finally, PreJoin employs a new active-node set generation
method that first avoids adding false positive into the active-
node sets, and generates active nodes by investigating rela-
tively larger subtries rooted at parent’s active nodes.

3.1. Novel Active Nodes

Method

Generation

The new generation method avoids adding false candi-
dates by enforcing the following rules during active-nodes
generation.

RULE I: The first rule is to apply symmetry property
of edit distance early in the generation: Given two strings
s1 and sa, ed(s1,82) = ed(s2,s1). Note that a similar
concept is used in Trie-PathStack. But, it is used there in a
subsequent pruning phase, not in the generation phase as
in PreJoin. There are two cases where we can apply the
symmetry property.

Case 1: Suppose n is the trie node at level ¢ that is currently
processed in the traversal. There are two sub-cases: (1)
Each n’s ancestor node m atdepthj =¢—1,1—2,...,i—7,
is an active node of n within distance j, since j deletion
operations are required to transform the corresponding
string of n into the corresponding string of m. (2) Each n’s
descendant node m atdepth j = ¢+ 1,74+ 2,...,7 + T,
is an active node of n within distance j, since j insertion
operations are required to transform the corresponding
string of n into the corresponding string of m. Based on
the symmetry property, our generation method does not
include all ancestors and descendants active nodes m into
A,. Nevertheless, when n is of type EOS, the function
Out-Similar (Line 7, Figure 3) searches for descendants
m of type EOS and within distance 7 from n, and then
outputs the strings corresponding to n and m. As an
example, according to our generation method, although the
nodes nq,ns, n3, nyg in Figure 1 are actives to the node ny
according to Trie-Traverse algorithm, they are not included
into A,,, by PreJoin (see Figure 4). However, the similar
pairs (s1,s2) and (s1,s4) will be output by the function
Out-Similar when ns is accessed.

Case 2: Also based on the symmetry property, our method
does not allow any node already traversed to be an active
node of n. For example, suppose that nq3 of Figure 1 is
the currently processing node. The active-node set A,
does not include the nodes n; and ng, since they are
already processed. However, to guarantee completeness,
the function Out-Similar will also be responsible of dealing
with this case as follow. Suppose n is the trie node currently
under processing in the traversal. For each active node
m € A, with distance d, Out-Similar searches in the hight
T — d subtrie rooted at m for any node of type FOS to be

Figure 4. Preorder Traversal plus Active-node
set generation in Predoin (7 = 1).

output. It also searches the hight 7 — 1 subtrie rooted at
each n’s sibling for EOS nodes to output. For example, let
node n9 in Figure 4 be under processing. Since it is of type
EOS, the subtries rooted at no and m1; are processed by
Out-Similar.

RULE II: The second rule taken by the generation
method is that, while the method generates active-node set
A, from its parent’s active-node set, it does not insert the
remaining siblings as active nodes, though those siblings
are active nodes to each other because any two siblings
are within edit distance one. Note that one substitution
operation is required to transform the corresponding string
of one sibling into the corresponding string of another.
Nevertheless, latter on when a sibling becomes the current
node to be processed, the method considers the unpro-
cessed siblings as active nodes and the subtrie rooted at
each sibling will be investigated (Line 15, Figure 3). As
an example, using our method, the trie nodes ng and 713
in Figure 4 are not inserted into .A,,,. But latter on when
creating active-node sets of ni’s children, the subtries
rooted at ng and nq3 are investigated, taking into account
they are within edit distance one.

Figure 4 shows the active-node sets generated by
PreJoin. Comparing these sets against the ones generated
by Trie-Traverse, we find that the active-node sets produced
by PreJoin are minimized.

Below, we show how our generation method computes
an active-node set of a given node by deeply investigating
a subtrie rooted at each active node of its parent. The
involved deep search guarantees that larger subtries are
considered relative to ICAN method. Moreover, since

PreJoin requires the active-node set of a node to be
available when it is visited, the generation method chooses
to generate active-node sets of all children of a currently
visited node at once. Thus, each subtrie is searched only
once, saving most of the duplicated computations. Hence,
PreJoin is capable of dealing with long strings efficiently.
Note also that the pruning rules considered will make
PreJoin able to cope with larger 7. Before proceeding, let
n¢ denote the character at node n.

A =
S m
L mj

Figure 5. Computing Active-node sets of n
children.

The active nodes computation is outlined in PreJoin
under the function Gen_ActiveNode (Line 11-15, Figure 3).
It works as follows. Suppose 7 is the currently visited node
in PreJoin. PreJoin supposes that A,, is already available.
For each active node m in A,, at distance d < 7, only
the subtrie rooted at m is examined. Note also that, the
unprocessed siblings are active nodes at distance one, but
they are not included in A,, according to the above second
rule. The trie level at which the search can reach in a
subtrie depends on n¢ and m¢, as illustrated in Figure 5.
We have two cases: (1) m€ differs from n®. In this case, the
search can reach up to the level [,,, + (7 — d) + 2, where [,,,
is the trie level of node m, and (2) m* matches n¢. Here,
we can reach up to the level I, + (7 — d) + 1. Next, we
show how to search the subtrie.

Considering m: m will be an active node of each child
n; of n at distance d + 1, if m® differs from n§, since m
could be transformed to n with d edit operations and then
one deleting operation is required for n§. Otherwise, if m¢
matches ng, m is an active node of n; at distance d, since
the previous substitution operation between m® and n® is
replaced by an insertion operation of n°.

Considering m’s descendants: Each descendant m; of

m at level [,,, + 1,] < 7 — d is an active node of each
child n; of n with distance d + [, if each node character
on the path from m to m; does not match both n¢ and ng,
since m could be transformed to n with d edit operations,
and [— 1 insertion operations are required for the path
characters, and one substitution operation is required for
ng and mg. Otherwise, if m; is the only path character
that matches n{, then m; and n; are within distance k+[—1.

If m$ match n®, then m,; is an active node of n with
distance d + [— 1. Otherwise, if m{ does not match n°¢,
then m; is an active node of n with distance d + [, if each
node character on the path from m to m; does not match
n®. In these two cases, the subtrie rooted at m; needs to be
further processed. When n and m are at distance 7. First,
m; is active node of n; with distance 7, if m{ matches
ng. Second, m; is active node of n with distance 7, if n°
matches my, thus each child of m; is at distance 7 with the
child n; having the same character.

Keeping minimum distances: During the computation of
the active-node set \A,,,, whenever we add a node m; with
distance d; to the set, if m; is already there with distance
ds, we always keep the smaller distance.

Example 3.1 Consider the trie in Figure 4, and let T = 1.
Suppose ny is the currently processed node in PreJoin. A,,,
must be available. According to rules I and I1, A,,, is empty.
Note that ng and n13 are at distance 1 but they are not in-
cluded in A,,,. Thus, the subtries rooted at ng and ny3 will
be searched to compute A,,, and A,,,. Considering ng: ngy
is at distances 1 and 2 from ns and no, respectively, since
ng matches ng and differs from n§. Since T = 1, ng is in-
cluded in A, but not in A,,,. Considering descendants of
ng: Nig is at distance 2 from ns and ng, since ng, differs
from both n5 and ng. Since T = 1, nyg is not included in
Ap, and A,,,. Since n§, matches n$, ni is an active node
of n1 with distance 1. Then the subtrie rooted at nig must
be processed. n11 is at distance 1 and 2 from ny and ns, re-
spectively, since n{, matches n5 and differs from ng. Since
T =1, nyy is included in A,,, but not in A,,,. Similarly the
subtrie rooted at n13 can be searched.

4. EXPERIMENTAL Evaluation

In this section, we evaluate the performance of PreJoin
on real data sets. PreJoin is implemented in standard C++
with STL library support and compiled with GNU GCC.
Experiments were run on a PC with Intel(R) Core(TM) 2
Duo 2.66GHz CPU and 4G memory running Linux.
Datasets: Three real datasets are used in experiments:

’ Data sets | avg-len | max-len | min-len | |3 |
DBLP Author 12,82 46 4 37
AOL Query Log 20,94 500 1 37
DBLP Authors+title | 104,78 1,743 10 37

Table 1. Data set statistics.

DBLP Author?, DBLP Author+Title, and AOL Query Log>.
Table 1 illustrates statistical detailed information of each
data set. It shows the average, max and min lengths of
strings in the data sets. DBLP Author is a data set with short
strings, DBLP Author+Title is a data set with long strings,
and the Query Log is a set of query logs. Note that these
datasets are the same as that used in [3].

4.1. Comparison with Trie-based Join algo-
rithms

Here, we compare our algorithm PreJoin against
Trie-Travese algorithm and the state-of-the-art algorithm
Trie-PathStack for different 7. The executables for Trie-
Travese and Trie-PathStack were obtained from their
author [3]. Figure 6 shows the result for the datasets on
different 7 = 1 — 3. Note that we have three sub-figures for
each dataset. Each sub-figure plots the performance result
with fixed 7 and different subsets of the original dataset.
Different subsets are used to show the scalability on the
dataset size, whereas a sub-figure is used for each 7 to
show the scalability when 7 increases.

On the author dataset with short strings, Figure 6
shows that PreJoin perform the best. It outperformed
Trie-Pathstack, and the performance gap increases with
larger 7 and large subsets. The performance gap between
PreJoin and Trie-Traverse is relatively large, especially for
7> 1.

On the Author+Title dataset with long strings, PreJoin
significantly outperformed Trie-Traverse by more than one
order of magnitude, especially for 7 > 1. Also the perfor-
mance gap between PreJoin and Trie-PathStack increases
more than before; it outperforms Trie-PathStack by factor
five when 7 = 3 and the subset is large.

5. Conclusion

In this paper, we have studied the problem of Trie-based
string similarity Joins with edit-distance constraints. We
proposed a new Trie-based Join algorithm called PreJoin,

Zhttp://www.informatik.uni-trier.de/ ley/db
3http://www.gregsadetsky.com/aol-data/

10 —— 100 —— 1000 ——
Pre-Join Pre-Join Pre-Join
Trie-PathStack Trie-PathStack —»—- Trie-PathStack -~
— Trie-Traverse =) — Trie-Traverse -+ . = 100 | Trie-Traverse
k=) - k=) ©
c c c
] <] 9]
3]) 3]
Q o) Q
& & A2
o] O]
E E E
= = [
0.01 . 0.1
5 10 20 50 100 200 5 10 20 50 100 200 5 10 20 50 100 200
author strings # author strings # author strings
(a) Author: 7 =1 (b) Author: 7=2 (c) Author: 7=3
1 1 1
0 Pre-Join —— 00 Pre-Join —— 000 Pre-Join ——
Trie-PathStack - Trie-PathStack -~ Trie-PathStack -
— Trie-Traverse = - — Trie-Traverse -+ — Trie-Traverse
2 2 2 100t
]]]
[S] (8] (5]
Q o) D
& & &
Q] Q
E £ E 10
= = [
0.01 . . . 01 . . . 1 . . .
10 20 50 100 200 10 20 50 100 200 10 20 50 100 200
query strings # query strings # query strings
(d) Query Log: 7 =1 (e) Query Log: 7=2 (f) Query Log: 7=3
1 T . 1 T . 1 T .
0 Pre-Join —— 00 Pre-Join —— e 000 Pre-Join ——
Trie-PathStack - Trie-PathStack -~ g Trie-PathStack -
— Trie-Traverse — Trie-Traverse .~ T — Trie-Traverse i
'g tc‘i 10 b e 'g 100 L e
3 9 e I} T
(5] (8] (5}
@ 1 o) 9]
& &2 &
o]] Q e
£ E 1y £ 10
= [[
01 . . . 01 . . . 1 . . .
10 20 50 100 200 10 20 50 100 200 10 20 50 100 200
dblp strings # dblp strings # dblp strings
(g) Autor+Title: 7 =1 (h) Autor+Title: 7=2 (i) Autor+Title: 7=3

Figure 6. Comparative Performance: Predoin, Trie-PathStack and Trie-Traverse on different dataset

sizes (#strings in K).

which improves over current Trie-based Join methods. It
efficiently finds all similar string pairs using a new active-
node set generation method, and a dynamic preorder traver-
sal of the Trie index. Experiments show that PreJoin scales
the Trie-based Join to be used on datasets with long as well
as short strings, even with large edit distance threshold.

References

[1] A.Arasu, V.Ganti, and R.Kaushik. Efficient exact set-
similarity joins. In Proceedings of the 32nd international
conference on Very large data bases, VLDB ’06, pages 918—
929. VLDB Endowment, 2006.

[2] C.Xiao, W.Wang, and X.Lin. Ed-join: an efficient algo-
rithm for similarity joins with edit distance constraints. Pro-
ceedings of the 34nd international conference on Very large
data bases. VLDB ’08’, pages 933-944. VLDB Endow-
ment, 2008.

(3]

(4]

(5]

(6]

J.Wang, J.Feng, and G.Li. Trie-join : Efficient trie-based
string similarity joins with edit-distance constraints. In Pro-
ceedings of the 36nd international conference on Very large
data bases, VLDB ’10, pages 1219-1230. VLDB Endow-
ment, 2010.

R.J.Bayardo, Y.Ma, and R.Srikant. Scaling up all pairs sim-
ilarity search. In Proceedings of the 16th international con-
ference on World Wide Web, WWW ’07, pages 131-140.
ACM, 2007.

S.Chaudhuri, V.Ganti, and R.Kaushik. A primitive operator
for similarity joins in data cleaning. In Proceedings of the
22nd International Conference on Data Engineering, ICDE
’06. IEEE Computer Society, 2006.

SJi, G.Li, C.Li, and J.Feng. Efficient interactive fuzzy key-
word search. In Proceedings of the 18th international con-
ference on World Wide Web, WWW ’09, pages 371-380.
ACM, 2009.

