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Abstract. In the data mining field, data representation turns out to be one of
the major factors affecting mining algorithm scalability. Mining Frequent Itemsets
(MFI) is a data mining problem that is heavily affected by this fact. The vertical
approach is one of the successful data representations adopted for MFI problem.
The main advantage of this approach is support for fast frequency counting via join-
ing operations. Recently, an encoding method called prime-encoding is proposed as
an enhancement for the vertical approach [10]. The performance study introduced
in [10] confirmed the high quality of prime-encoding based vertical mining of fre-
quent sequence over other vertical and horizontal ones in terms of space and time.
Though sequence mining is more general than itemset mining, this paper presents a
prime-encoding based vertical mining of frequent itemsets with new optimizations
and a new re-encoding method that further enhance memory and speed. The exper-
imental results show that prime encoding based vertical itemset mining is suitable
for high-dimensional sparse data.
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1 INTRODUCTION

Mining Frequent Itemsets (MFI) is a fundamental and essential problem in many
data mining applications, including market and customer analysis, mining web logs,
patterns discovery in protein sequences, and so on. The problem is formulated as
follows: Given a set of item transactions, find all frequent itemsets, where a frequent
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itemset is one that occurs in at least a user specified percentage of the data.

Several efficient and scalable algorithms have been proposed in the previous stud-
ies, ranging from mining frequent itemsets [3, 15, 1, 11, 16, 19, 20], with and without
constraints, to mining closed and maximal itemsets [6, 12, 5, 13, 7, 9, 21, 18]. Most
of the existing methods follow implicitly or explicitly the same search and pruning
strategies, that are often depth or breadth first search with pruning mostly based
on the downward closure property [3]. Indeed, the variant performance of current
methods is due to the way of how each method represents data and counts pattern
frequency. Generally, there are two main data representation approaches referred to
as the horizontal and the vertical approaches. In the horizontal data representation,
the data set consists of a list of tuples called transactions, where each transaction
has an identifier called tid (tid stands for transaction id), followed by a list of items
in that transaction. In the vertical data representation, two data formats are often
used, tidsets and bitmaps. In tidset format, each data item is associated with its
corresponding tidset, the set of all tids where it appears, whereas in bitmap, a bit
is used for each transaction. The bit is set to one if the item appears in the corre-
sponding transaction whereas zero is used to register the item absence.

In this paper, we focus on the vertical format, in particular its performance on
sparse data. The main advantage of the tidset format is that tidsets offer natu-
ral pruning of irrelevant transactions as a result of joining (tids not relevant drop
out) [19]. Thus, when the original and intermediate relevant data is very small as in
sparse domains, tidset becomes one of the most efficient data representations. The
bitmap format, on the other hand, suffers from the problem of sparseness of the
bitmaps especially at lower support levels as always occurs for sparse data, though
on new 64 bit-based computer systems joining bitmaps becomes very fast.

Can vertical-based algorithms be enhanced further for sparse data? Recently, an
encoding method called Prime-block Encoding is proposed as an enhancement for
the vertical approach [10]. The primal structure is a very elegant structure and is
much more compact than bitmap and tidset. In addition, it combines the virtues of
both formats– irrelevant data drops out as early as possible as a result of joining as
in tidsets and joining is performed very fast as in bitmap. The performance study
presented in [10] confirmed the high quality of prime-encoding based vertical min-
ing of frequent sequence over other vertical and horizontal ones in terms of space
and time. Though sequence mining is more general than itemset mining, this paper
presents a prime-encoding based vertical mining of frequent itemsets with new opti-
mizations and a new re-encoding method that further enhance memory and speed.

A systematic performance study is reported to verify the performance gain
claimed by these new optimizations. To do so, the prime-encoding is integrated
with Eclat [19], the state-of-the-art tidset-based frequent itemset mining method.
Our enhancement is called P Eclat. The experimental results show that the prime-
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encoding with the new optimizations deliver more than 4 times performance im-
provement over the tidset-based mining on sparse data.

The remainder of this paper is organized as follows. The problem of Mining
Frequent Itemsets and preliminary work are presented in Section 2. Section 3 is
devoted to P Eclat algorithm and the new optimizations. The related work is dis-
cussed in Section 4. The experimental results are reported in Section 5. Section 6
concludes the paper.

2 PRELIMINARIES

2.1 Problem Definition

Let I = {i1, . . . , im} be a set of items, and D = {T1, T2, . . . , TN} a set of tuples called
transactions, where each transaction Ti has a unique identifier (tid) and contains a
set of items. Let T = {1, 2, . . . , N} be the the set of tids in D, a set X ⊆ I is called
an itemset, and a set of tids Y ⊆ T is called a tidset. An itemset with k items is
called a k-itemset. For convenience we write an itemset {A,C,W} as ACW , and a
tidset {2, 4, 5} as 245. A transaction Ti is said to contain an itemset X, if X is a
subset of Ti. The absolute support of an itemset X is defined as the number of data
transactions that contain X, and the relative support is defined as the percentage of
data transactions that contain X. Without loss of generality, we use the absolute
support in the rest of the paper while in experimental study the relative support
is often used. The support of itemset X in a data set D is denoted by supD(X).
Given a support threshold min sup, itemset X is frequent in a data set D if X is
contained by at least min sup transactions of D. The problem of Mining Frequent
Itemsets is to find all frequent itemsets in a data set D, given a support threshold
min sup.

tid T

1 ABE
2 BD
3 BC
4 ABD
5 AC
6 BC
7 AC
8 ABCE
9 ABC

Table 1. Horizontal Data D

Example As an example, consider the transaction data set D shown in Table 1.
It consists of 9 transactions, and there are five items used, i.e., I = {A,B,C,D,E}.
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Suppose min sup = 2. The 2-itemset BD is frequent since it is contained by the
second and fourth tuples of D.

Search Space The search space for enumeration of all frequent itemsets is given
by the power set P(I) which is exponential (2|I|) in the number of items. Figure 1
shows an example of a complete itemset search tree for I = {A,B,C,D,E}. The
root is the null itemset and each lower level k contains all of the k-itemsets, which
are ordered lexicographically. Notice from the figure that the itemset search tree
is huge even with very few data items. The factors which make mining frequent
itemsets feasible is that the real data instances comprise of short transactions. This,
indeed, bounds the deepest levels at which mining will be stopped. The uncrossed
nodes of the tree represent the frequent itemsets of the example data given in Ta-
ble 1 with deepest level is at most 3. Pruning is also used to cut the search space
that should be considered. For example, support-based ordering of tree nodes and
the downward closure property1 help to narrow down the search space and prune
unnecessary branches.

A {B,C, D, E}

AB {C,D, E}                         AC {D, E} AE

ABE

ACDE

ADE

BCDE

BDE

{} {A, B,C, D, E}

C{D,E}

CD{E} CE

CDE

D{E}

DE

E

      BD{E} BE

  BCE BCD{E}

 AD{E}

ABC{D,E}

ABDEABCE

ABCDE

ABCD{E}

ACD ACE

BC{D,E}

    B{C,D, E}

ABD{E}

Fig. 1. Subset Search Tree

2.2 Common Data Formats

The data format given in Table 1 is the traditional horizontal data representation.
Vertical format is another data representation used. Two variant of the vertical
representation are tidset and bitmap. In the tidset format, we maintain for each

1 the property that all subsets of a frequent itemset must themselves be frequent.
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item its tidset, a set of all tids where it occurs, whereas in bitmap, a bit is used
for each transaction. The bit is set to one if the item appears in the corresponding
transaction whereas zero is used to register the item absence. For each item il ∈ I,
let t(il) denote its tidset and b(il) denotes its bitmap. Table 2 and Table 3 show
tidset and bitmap formats, respectively. Methods use horizontal format include
Apriori [1], MaxMiner [6] and DepthProject [5]. Methods based on vertical tidset
format include Eclat [19], Charm [21], and Partition [15]. Methods based on vertical
bitmap format include Viper [16] and Mafia [7, 8]. Our main focus is to improve
upon methods that utilize the vertical format for sparse data.

t(A) t(B) t(C) t(D) t(E)

1 1 3 2 1
4 2 5 4 8
5 3 6
7 4 7
8 6 8
9 8 9

9

Table 2. Vertical Data: tidset

tid b(A) b(B) b(C) b(D) b(E)

1 1 1 0 0 1
2 0 1 0 1 0
3 0 1 1 0 0
4 1 1 0 1 0
5 1 0 1 0 0
6 0 1 1 0 0
7 1 0 1 0 0
8 1 1 1 0 1
9 1 1 1 0 0

Table 3. Vertical Data: bitmap

2.3 Frequency Counting

Each node in the subset search tree can be treated as a prefix itemset, from which
the set of its children can be generated by adding one item from I. Because we
are only interested in mining frequent itemsets, according to the downward closure
property, we only need to grow a prefix itemset using the set of its locally frequent
items. Two ways are presented in the literature to determine the prefix locally
frequent items. Suppose the prefix is at level k, i.e., it is a k−itemset. The first way
is to determine locally frequent items from the frequent itemsets at the prefix level,
i.e, from frequent k−itemsets. They are the suffix items of those itemsets sharing
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the prefix in all its first k− 1 itemes, in the same order. The class of these itemsets
is referred to as the prefix equivalence class [19]. For example, the items C and E
are the locally frequent items that are used for extending the prefix AB. Another
way is presented in [11, 5] and explained below.

Vertical Counting In vertical-based methods, the generated itemset is tested
against the data set through constructing its corresponding vertical structure. Let
X = Pxi

2 be a prefix itemset and xj be the locally frequent item used for extending
X. The corresponding tidset of the generated itemset Xxj is constructed through
intersection on transaction ids of the two tidsets t(Pxi) and t(Pxj), i.e., t(Xxj) =
t(Pxi)∩t(Pxj), if the equivalence class approach is used [19] or t(Xxj) = t(X)∩t(xj)
otherwise. On the other hand, bitwise AND (∧) on the corresponding bitmaps is
enough to get b(Xxj). The new itemset support is given by the number of distinct
tids in the corresponding tidset, or the number of ones if bitmaps are used.

Horizontal Counting Horizontal-based algorithms, on the other hand, use data
scans for this task. In the first generation of horizontal algorithms–itemsets genera-
tion is based on breadth first traversal–full scans of the entire data is used to evaluate
the support of generated k-itemsets [3, 4, 1, 17, 6]. In the second generation of hor-
izontal algorithms–algorithms are based on depth first traversal–algorithms utilize
proper data projection to reduce the size of the data to be scanned [5, 11]. Data
projection means that, during search, the transactions containing the given prefix
itemset X are collected to form the X-projected data. Then, the further search of
larger itemsets can be achieved by searching only the X-projected data. In order
to get the frequent extensions of X, the X-projected data is scanned to count the
locally frequent items with respect to X which can be used to grow prefix X in order
to get longer frequent itemsets. Then, the X-projected data is reprojected for every
extension.

2.4 Primal Block Encoding

Recently, an encoding method called Prime-block Encoding is proposed as an en-
hancement for the vertical approach [10]. The method is explained as follows. Given
T = [1 : N ] = {1, 2, . . . , N}, the set of tids in the data set D, and let G be a base
set of prime numbers sorted in increasing order. Without loss of generality assume
that N is a multiple of |G|, i.e., N = m · |G|. Let B ∈ {0, 1}N be a binary vector of
length N . Then B can be partitioned into m = N

|G| consecutive blocks, where each

block Bi = B [(i− 1) · |G|+ 1 : i · |G|], with 1 ≤ i ≤ m. In fact, each Bi ∈ {0, 1}|G|,
can be thought of as an indicator vector, representing subsets of G. Let G[j] de-
notes the j-th prime in G. Define the value of Bi with respect to G as follows,
ν(Bi, G) = ⊗{G[j]Bi[j]}. For example if Bi = 1001, and G = {2, 3, 5, 7}, then

2 xi is a single item and P is an itemset, where |P | ≥ 0
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ν(Bi, G) = 21 ·30 ·50 ·71 = 2 ·7 = 14. Note also that if Bi = 0000 then ν(Bi, G) = 1.
Define ν(B,G) = {ν(Bi, G) : 1 ≤ i ≤ m}, as the primal block encoding of B with
respect to the base prime set G. It should be clear that each ν(Bi, G) ∈ P (G), the
power set of G. Note that when there is no ambiguity, we write ν(Bi, G) as ν(Bi),
and ν(B,G) as ν(B). As an example, let T = {1, 2, ....., 12}, G = {2, 3, 5, 7}, and
B = 100111100100. Then there are m = 12/4 = 3 blocks, B1 = 1001, B2 = 1110
and B3 = 0100. We have ν(B1) = ⊗SG(B1) = ⊗{2, 7} = 2 · 7 = 14, and the primal
block encoding of B is given as ν(B) = {14, 30, 3}. Define ones(B) to be the number
of 1’s in the binary vector B. For example ones(100111100100) = 6.

p(A) p(B) p(C) p(D) p(E)

14 210 5 21 2
70 21 210 1 7
2 2 2 1 1

Table 4. Vertical Data: primal structure

t(AB) b(AB) p(AB)

1 1 14
4 0 7
8 0 2
9 1

0
0
0
1
1

Table 5. Joining tidsets, bitmaps and primal block
structures.

Table 4 shows the vertical primal block encoding format of the example data
given at Table 1. Note that the primal structure is compact, for example, |p(B)| = 3
integers, whereas |t(B)| = 7. Given two integers a and b. Let gcd(a, b) denote the
greatest common divisor of the two numbers a and b. The following theorem presents
a way to join primal block encoding structures and get the number of ones of the
generated structure.

Theorem 2.1. Let G be the base prime set, and let A = A1A2 · · ·Am, and B =
B1B2 · · ·Bm be any two binary vectors in {0, 1}N , with N = m · |G|, and Ai, Bi ∈
{0, 1}|G|. Then ν(A ∩ B) = {gcd(ν(Ai), ν(Bi)) : 1 ≤ i ≤ m}, and ones(A ∩ B) =∑

i ∥gcd(ν(Ai), ν(Bi))∥G.

Continuing our example above, let A = 100011111000, then ν(A ∩B) =
ν(100011100000) = {ν(1000), ν(1110), ν(0000)} = {2, 30, 1}. Note that ν(A) =
{2, 210, 2}, and ν(B) = {14, 30, 5}. Applying the above theorem, we have ν(A∩B) =
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{gcd(2, 14), gcd(210, 30), gcd(2, 1)} = {2, 30, 1}, which matches the direct computa-
tion. Also ones(A ∩ B) = ∥2∥G + ∥30∥G + ∥1∥G = 1 + 3 + 0 = 4. Table 5 shows
the structures t(AB), b(AB) and p(AB) of the 2-itemset AB. These structures are
generated by joining those of itemsets A and B.

3 P ECLAT ALGORITHM

We integrated the prime-encoding method with Eclat [19], the state-of-the-art tidset-
based frequent itemset mining method. Our enhancement is called P Eclat. P Eclat
is outlined in Algorithm 1. Details on new optimizations are given in the following
subsection. P Eclat algorithm follows the equivalence class approach. It performs
a depth first search of the subset tree. The input to the procedure is a set of class
members for a subtree rooted at P . Frequent itemsets are generated by joining
primal structures of all distinct pairs of itemsets and checking the support of the
resulting itemset. A recursive procedure call is made with those itemsets found to be
frequent at the current level. This process is repeated until all frequent itemsets have
been enumerated. In terms of memory management, it is easy to see that we need
memory to store intermediate primal structures for at most two consecutive levels
within a class. Once all frequent itemsets at the next level have been generated, the
itemsets at the current level within a class can be deleted.

Algorithm 1: P Eclat(min sup, D)

Input: Transactional data set D, min sup.
output: F : Frequent itemsets in D.

1. F1 = { frequent items or 1-itemsets }
2. F2 = { frequent 2-itemsets }
3. ξ = { equivalence classes [P ] }
4. for all [P ] ∈ ξ do Enumerate-Frequent-Itemsets([P ])
5.Procedure Enumerate-Frequent-Itemsets([P ])
6. for each Xi ∈ [P ] do
7. for each Xj ∈ [P ], with j > i do
8. R := Xi ∪Xj

9. p(R) := {gcd(p(Xi)l, p(Xj)l) : 1 ≤ l ≤ m}
10. σ(R) :=

∑
l ∥gcd(p(Xi)l, p(Xj)l)∥G

11. if σ(R) ≥ δ × |D| then
12. Fi := Fi ∪ {R} // Fi initially empty
13. if Fi ̸= ϕ then Enumerate-Frequent-Itemsets(Fi)
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3.1 Optimizations

3.1.1 Optimization 1: Removing Sparse Blocks

The primal structure size m is not fixed across all tree levels but it could be pro-
gressively decreased level by level as follows: If the prefix primal structure contains
l entries of ones (i.e., l sparse blocks), then those ones could be deleted at the next
level since it is assured that all structures which are formed using this prefix contain
those ones at the same positions3. Thus, all itemsets generated by the prefix will
have primal structures of size m − l. For example, consider the prefix D of the
previous example, its primal structure p(D) contains ones at the second and third
positions. We can assign the new structure p(DE) size 1 instead of 3 since it is
guaranteed that its second and third elements will be ones and does not contribute
to the support of DE. Then p(DE) = {1}. This way we save more space during
computation.

3.1.2 Optimization 2: Building Initial Primal Structures

The initial primal structures can be computed from tidsets at any level of the search
tree. It could also be read from disk directly using a primal version of the data. If we
choose in the implementation to build primal structures for frequent items, we may
have structures longer than the corresponding tidsets. The size increase is because
each item’s primal structure contains many ones corresponding to the sparse blocks,
i.e., blocks of T where the item does not appear. Assume, for example, that the
minimum support is set to 1 in Example 2.1, then every item having this support
will be associated a primal structure of size 3. Contrast this to the corresponding
tidsets of length 1. Generally, if |G| = 4, then all data items with support less
than 25 percent of the data have primal structures longer than their corresponding
tidsets. In sparse domains, most data items have this support bound.

Although the many ones exist in the prefix primal structure will be removed from
the next level primal structures according to optimization 1, we have decided to con-
struct the initial primal structures at the second tree level, i.e., for 2-itemsets. The
primitive way for doing this is to first get tidsets and then construct primal struc-
tures from them using the primal encoding method. The resulting primal structures
will have the original size m but they may contain more ones than before. Consider
Example 2.1, p(AB) = {14, 7, 2} could be constructed directly from t(AB) by ap-
plying the encoding ν instead of joining p(A) with p(B). The method adopted in
our implementation is the same as the primitive one but the difference is that we
do not actually build the second level tidsets in memory. The intersection is done
on the fly. We have also replaced the universal T = [1 : 12] in the transformation ν
by the new one T = [1 : 6] - the indices of the prefix tidset t(A). This is possible
since we are working with equivalence classes and the prefix tidset indices will be

3 gcd(1, x) = 1 for any integer x ≥ 0
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the new universal set to the class instead of original T . As an example, consider
how to build p(AB). For each tid in the intersection t(AB), we get its position at
the prefix tidset t(A). This position has its corresponding prime number according
to the transformation ν with the new universal set. The positions of tids of t(AB)
at t(A) are 1, 2, 5 and 6, their equivalent prime numbers when |G| = 4 are 2, 3, 2,
and 3 according to the new ν. Then p(AB) = {6, 6}. Compare this primal structure
with the one derived before, the size here is 2 instead of 3.

Why primal encoding at the second level of the search tree speed up mining?
Building second level primal structures contributes not only in removing sparse
blocks but in a high compression. At the second level, tidsets will be compressed
than ever, since we build primal structures using the indices of prefix’s tidset. The
maximum index value is equal to the prefix support, then every generated primal
structure will be of size at most ⌈sup(a)/|G|⌉, where a is the prefix item. Compare
this size with ⌈|T |/|G|⌉. In the case of sparse data, where |T | ≫ sup(a),∀a, the
primal structure becomes very short. Sorting frequent items in increasing order of
support and building primal structures at the second tree level as the optimization
2 suggests will improve the storage.

3.1.3 Optimization 3: Re-encoding

Primal block structure adds to the vertical tidset approach new advantages espe-
cially for sparse data. First, it becomes memory-efficient. It is clear that primal
structure is a compressed form of tidset and the compression ratio depends on the
base prime set size, |G|. In the previous example, where G is the first four primes,
p(AB) achieves 50% compression on the corresponding tidset t(AB) – |p(AB)| = 2
whereas |t(AB)| = 4. Alternatively, if we choose G to be the first eight primes,
then p(AB) = {858} achieves about 75% compression on t(AB). Generally, we can
achieve up to 10|G|% compression ratio on tidsets. Unfortunately, |G| is bounded
by the memory size allowed for each integer on the computer system. Moreover,
10|G|% reduction ratio is possible at the beginning of the encoding process, i.e.,
with initial primal structures, and it decreases upward until, in the worst case, the
primal structures hold the same size as if tidsets were used, and this of course will
be at the end of mining.

Even with small G we can keep the initial compression ratio across all search
tree levels by applying the concept of re-encoding. The main issue here is that
re-encoding is performed given primal structures not tidsets or bitmaps. Naive re-
encoding works by first joining the corresponding primal structures on the fly and
while joining, it decodes each generated element to its corresponding tids in order to
decide their positions at the corresponding prefix tidset, then it follows the method
presented at optimization 2 to re-encode. Consider for example re-encoding while
joining p(A) with p(B) given in Table 4. Joining p(A) with p(B) on the fly yields
p(AB) = {14, 7, 2}, decoding its elements 14, 7 and 2, we get the positions 1, 2, 5
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and 6 at t(A), respectively, where the positions 1 and 2 correspond to the element
14. Then by encoding these positions we get p(AB) = {6, 6}.

The main problem with naive re-encoding is that the cost of decoding elements
to their corresponding tids and then re-encoding would be expensive than joining
the original tidsets. The adopted re-encoding methodology works by deciding for
each prefix primal structure what is called the encoding regions: the ranges on prefix
primal structure for which the total number of tids corresponding to primal entries
are at most |G|. These encoding regions are collected in a prefix offset array. This
array guides re-encoding while joining the prefix primal structure with every primal
structure in its equivalence class. Consider re-encoding p(AB) according to this
method. There are two encoding regions of p(A), where the first region is given
by the element 14 and the second is given by the two elements 70 and 2, since the
element 70 has corresponding 3 tids and 2 has only one corresponding tid; these
four tids represent a region to be re-encoded into one new element while joining.
While joining p(A) = {14, 70, 2} with p(B) = {210, 21, 2}, the first element is joined
without re-encoding to get 14 whereas the second and third elements are joined
then re-encoded. Joining 70 with 21 and 2 with 2 yield the elements 7 and 2, since
these elements are at the third and fourth positions of the encoding region, these
two elements are encoded into the element 35, then the resulting structure becomes
p(AB) = {14, 35}.

The question arising here is that: Does the benefit of using the encoded primal
structures outweigh the cost for re-encoding at every tree node? Re-encoding guar-
antees that every generated primal structure will be of size at most ⌈sup(X)/|G|⌉,
where X is the prefix itemset. This shows a good memory saving. However, re-
encoding at every tree node may affect algorithm speed. In order to weigh up
memory saving and speed, we use an adaptive approach to determine when to re-
encode. At each node, we estimate the prefix primal structure size relative to prefix
support. When that ratio reaches some threshold, re-encoding is chosen for that
node and the subtree rooted at that node.

3.2 Auxiliary Data Structure

In our implementation of the primal encoding method, joining is performed very
fast using a collection of pre-computed, and compact, lookup tables. Since com-
puting the gcd is the prominent operation while joining primal structures, we use
a pre-computed table called GCD to facilitate rapid gcd computations. Note that
in our examples above, we used G as the first four primes. However, in our ac-
tual implementation, we assume |G| = 8, i.e., G = {2, 3, 5, 7, 11, 13, 17, 19}. Note
that with the new G, the largest element in ⊗P (G) is 9699690. In total there are
| ⊗ P (G)| = 256 possible elements.

In naive implementation, the GCD lookup table can be stored as two dimension
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array with cardinality 9699690 × 9699690, where GCD(i, j) = gcd(i, j) for any two
integer i, j ∈ [1 : 9699690]. This is clearly inefficient, since there are in fact only
256 distinct elements in ⊗P (G), and we thus really need a table of size 256 × 256
to store all the gcd values. We achieve this by representing each element in ⊗P (G)
by its rank, as opposed to its value [10]. For example, suppose the rank of the two
elements 210 and 42 in the set ⊗P (G) are 15 and 12 respectively. Then, gcd(15,12)
= 12 is equivalent to gcd(210, 42)= 42. Since rank ∈ [0 : 255], this representation
bring down the storage requirements of the GCD table to just 256 × 256 = 65536
bytes. The primal structures entries are also represented by element rank which
greatly enhance storage requirement of this format.

Other lookup tables. To speed up support determination, P Eclat maintains a
one-dimensional lookup array called CARD to store the number of prime factors,
i.e., factor-cardinality for each element in the set ⊗P (G). That is, for each x ∈
⊗P (G), we store CARD(rank(x)) = ∥x∥G. For example, since ∥42∥ = 3, we have
CARD(rank(42)) = CARD(12) = 3. To speed up re-encoding, another three-
dimensional lookup table called Common Facts is used. Common Facts stores for
each two elements in ⊗P (G) the locations of common factors to both elements.

4 RELATED WORK

Mining Frequent Itemsets problem was introduced in [2]. The extensive research
performed on this problem has led to an abundance of algorithms. Each algorithm
typically consists of two interleaved steps, namely generation of itemsets and fre-
quency testing. In most algorithms, generation is done by using one of the itemset
tree traversals: depth-first or breadth-first. The existing methods essentially differ
in the data structures used to ”index” the data to facilitate fast enumeration.

Two popular vertical and horizontal data representations are adopted. In ver-
tical representation, each item is associated with an inverted index called tidset or
bitmap. Frequency counting is done via joining operations on tidsets or bitmaps. On
the other hand, in horizontal representation, the data transactions are not indexed
at all, itemset frequency is determined by directly checking in which transaction the
itemset appear [2]. Data projection, which is a hybrid between the horizontal and
vertical representation, is introduced to accelerate the counting process of horizontal
algorithms [5, 11, 14].

In sparse domain, the main topic of this paper, where the original and inter-
mediate relevant data are very small, the horizontal approach with projection and
vertical tidset format seem to be suitable, since tidset joining offers natural pruning
of irrelevant data and the projected data become more and more smaller. However,
since projection requires the original data to be in memory, the horizontal approach
does not scale to large sparse data sets with long transaction size.
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Even-though bitmaps use bits to represent information and simple bitwise AND,
the ANDing operation does not affect the bitmap size. Hence, the vertical bitmap
approach suffers from the problem of sparseness of the bitmaps especially at lower
support levels. Data projection is also used in order to compress bitmaps [8], which
makes the bitmap-based approach competitive for mining sparse data as well. Nev-
ertheless, the additional memory required to hold the original data set as in the
horizontal approach bounds the applicability of the vertical bitmap approach to
only small data sets [7, 8].

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of P Eclat algorithm on sparse, syn-
thetic data sets. P Eclat is implemented with the three optimizations given in
Section 3 in standard C++ and compiled with GNU GCC. All experiments were
performed on a 3GHz dual Core PC with 4G memory running Linux.
Data Sets: We chose several sparse, synthetic data sets for testing the performance
of P Eclat. Synthetic data sets are generated using the IBM data generation pro-
gram [3]. There are several factors that we considered while comparing algorithms
on synthetic data sets. All of these factors can be specified as parameters when
running the generation program. For example, a transaction data set T10I4D100k
means that the data set contains 100k transactions; the average number of items per
transaction is 10; and the average number of items within the maximal itemsets is 4.
The number of items |I| is set to 1000 in all data sets unless mentioned otherwise.

5.1 Performance Study

To evaluate P Eclat algorithm, experiments are conducted to compare it with the
state-of-the-art horizontal and vertical frequent itemset mining algorithms like FP-
growth [11] and Eclat [19]. The codes/executables for these methods were obtained
from their authors. Two versions of P Eclat are used in the comparisons: P Eclat-
opt2 is the P Eclat algorithm with optimization 2, and P Eclat-opt3 is the algorithm
with optimizations 2 and 3.

Figure 2 shows the results for the data sets where all four methods can run for
at least some support values. P Eclat-opt3 shows the best performance on most
data sets. The only exception is for the data set T10I4D100k where FP-growth
outperforms other methods. For small data set like T10, the initial overhead needed
to set up and use the vertical representation in some cases outweighs the benefit
of faster counting, and because of this FP-growth run slightly faster for this small
data set. However, for all other data sets which are characterized by higher val-
ues of the parameters T and I, the performance of FP-growth degrades sharply to
the limit that it fail to run on our machine on very small support values. On the



14 K. Gouda, M. Hassaan

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.0002  0.00025  0.0003  0.00035  0.0004  0.00045  0.0005  0.00055

T
o

ta
l 
T

im
e

 (
s
e

c
)

Minimum Support (%)

T10I4D100k

FP_growth
Eclat

P_Eclat_Opt2
P_Eclat_Opt3

 0

 20

 40

 60

 80

 100

 120

 140

 0.0001  0.00015  0.0002  0.00025  0.0003  0.00035  0.0004  0.00045  0.0005

T
o

ta
l 
T

im
e

 (
s
e

c
)

Minimum Support (%)

T20I4D100k

FP_growth
Eclat

P_Eclat_Opt2
P_Eclat_Opt3

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.0008  0.00085  0.0009  0.00095  0.001  0.00105  0.0011  0.00115  0.0012

T
o

ta
l 
T

im
e

 (
s
e

c
)

Minimum Support (%)

T40I10D100k

FP_growth
Eclat

P_Eclat_Opt2
P_Eclat_Opt3

 1

 10

 100

 1000

 0.02  0.025  0.03  0.035  0.04  0.045  0.05

T
o

ta
l 
T

im
e

 (
s
e

c
)

Minimum Support (%)

T80I4D100k

FP_growth
Eclat

P_Eclat_Opt2
P_Eclat_Opt3

Fig. 2. Comparative Performance: FP-growth, Eclat, P Eclat-opt2, P Eclat-opt3

contrary, P Eclat-opt3 performance is less sensitive to these parameters. P Eclat-
opt3 outperforms FP-growth by more than one order of magnitude on the data set
T80I4D100k, and outperforms Eclat by more than three times on both T40I10D100k
and T80I4D100k. You can also note that P Eclat-opt3 outperforms P Eclat-opt2 for
all data sets. This confirms the benefit of re-encoding on the performance of P Eclat.

Figure 3 shows the performance on the data sets T40I16D100k and T120I4D100k.
These data sets are characterized by larger values of T and I. FP-growth is not
shown because it fails to run on our machine for the given minsup values due to its
memory consumption is well beyond the physical the memory available (4GB), and
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Fig. 3. Comparative Performance: Larger values of T and I

thus the program aborts when the system runs out of memory. Eclat and P Eclat-
opt2 also fail to run for the same reason for smaller minsup values (< 0.001) on the
data set T40I16D100k and (< 0.03) on the data set T120I4D100k. P Eclat-opt3
outperforms Eclat by more than four times on the larger data set T120I4D100k.
This result proves the advantage of the primal encoding method with re-encoding
over the tidset approach in terms of memory and speed.

Scalability: Figure 4 shows the scalability of the different methods when we vary
the different data set parameters. The base values used are as follows: T = 40,
I = 4, and D = 100k. We vary a single parameter at a time, keeping all others
fixed to the default values. Figures 4 shows the effect of increasing the number of
transactions from 100k to 300k, the effect of increasing the average transaction size
from 10 to 120, and the effect of increasing the the average number of items within
the maximal itemsets from 4 to 20. P Eclat-opt3 scales gracefully. It shows the
best performance in all experiments. The performance gain on different data set
parameters is consistent with previous experiments.

6 CONCLUSIONS

Mining Frequent Itemsets (MFI) is a fundamental and essential problem in many
data mining applications. The vertical approach is one of the successful data rep-
resentations adopted for MFI problem. In this paper, the Prime-block Encoding
method [10] is used with the vertical MFI Algorithms. New optimizations and
a re-encoding method are also presented. The experimental evaluation shows that
Prime-block Encoding based vertical itemset mining is suitable for high-dimensional
sparse data.
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