
Received June 22, 2019, accepted July 9, 2019, date of publication July 19, 2019, date of current version September 9, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2929954

SMCACC: Developing an Efficient Dynamic Secure
Framework for Mobile Capabilities Augmentation
Using Cloud Computing
DIAA SALAMA ABD ELMINAAM 1, FARAH TURKEY ALANEZI 1, AND KHALID M. HOSNY 2
1Department of Information Systems, Faculty of Computers and Informatics, Benha University, Benha 13511, Egypt
2Department of Information Technology, Faculty of Computers and Informatics, Zagazig University, Zagazig 44519, Egypt

Corresponding author: Diaa Salama Abd Elminaam (diaa.salama@fci.bu.edu.eg)

This work was supported in part by Benha University.

ABSTRACT Mobile capability development increases with the need to use it. However, mobile devices
still lack computational resources. Mobile cloud computing is the solution to overcome these challenges.
Extensive research has been conducted to solve these problems, and a large number of new techniques were
developed. Many of these researches solve the resource problem by partitioning and offloading applications
to the cloud to tap its full computational and storage availability. Other methods involve offloading part of
the applications while retaining the rest for processing on the smartphone — the decision making in these
techniques based onmetrics such as power andCPU consumption. Also, small numbers of available solutions
consider security issues. This paper proposed a new elastic framework named secure framework for mobile
capabilities augmentation using cloud computing (SMCACC) that enables transparent use of cloud resources
to augment the capabilities of resource-constrained mobile devices. A significant feature of this framework
is the partition of a single application into multiple components. Mobile apps can be executed on the mobile
device itself or offloaded to the cloud clone for execution. Thus, the elastic application can augment the
capabilities of a mobile device to save energy for a mobile device. Besides, a hybrid cryptography method is
used to secure data and take energy consumption in the considerations. The new proposed security protocols
use a combination of both symmetric and asymmetric cryptographic techniques to avoids the disadvantages
of the existing hybrid protocols. These methods help to protect users by securing data that offloaded to
the cloud. The results of this framework without security show the resources consumed for executing the
application on mobile and cloud are decreased approximately to half of the memory consumed for running
app on the mobile-only. According to the security framework, the resources consumed for executing the
application on mobile still decreased.

INDEX TERMS Mobile computing, mobile cloud computing, GPS calculations, hybrid security method,
fingerprint.

I. INTRODUCTION
Mobile devices, including smartphones and tablets, are
increasingly becoming an essential part of human life that
make them the most effective and suitable tools for com-
munication and entertainment. Also, it unbound by time and
place.

On these smartphones, there is a wide variety of operating
systems that have been developed to manage resources. Oper-
ating systems such as Android, IOS, Windows Mobile, and
BlackBerry allow programmers to build custom applications.

The associate editor coordinating the review of this manuscript and
approving it for publication was Tao Zhang.

Smartphones are the dominant future computing devices with
high user expectations for accessing the computationally
intensive applications seen in powerful stationary computing
machines [1].

Smartphone users are exceedingly connected to the Inter-
net these days; they can capture and manage photos and
videos, play music, movies, and complex games, and down-
load a lot of complex applications. However, the increasing
number of mobile apps available requires more resources
in terms of storage and processing capabilities. Figure 1
shows the market share of some popular smartphone brands
in millions of units.

120214 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-1544-9906
https://orcid.org/0000-0001-8065-8977


D. S. A. Elminaam et al.: SMCACC: Developing an Efficient Dynamic SMCACC

FIGURE 1. – Smartphone brand market share in millions of units.

Smartphones, compared to desktop computers, have less
computing power, less storage capacity, fewer memory
resources, and battery limitations. Demanding applications
such as the ones mentioned above require more resources on
mobile devices for better user experience. Hence smartphones
are resource-constrained. Much research was conducted to
address this problem, leading to four basic approaches to
saving energy and extending battery life. Mobile cloud com-
puting (MCC) is the solution to overcome the challenges.

Cloud computing is a kind of computing in which dynamic
virtual and scalable resources supported as an internet ser-
vice. Cloud services support software and hardware remotely
from a location controlled by a third party for individuals and
businesses [2]–[4].

The main goals of cloud computing are to improve the
efficiency of the runtime without needful in investing in new
infrastructure. The services model of could computing can be
classified as the following [3]

• infrastructure as a service (IaaS)
• data storage as a service (DaaS)
• hardware as a service (HaaS)
• software as a service (SaaS),
• platform as a service (PaaS).

Cloud computing service models illustrate in Figure 2.
Mobile cloud computing is a new platform combining

mobile devices and cloud computing into new infrastruc-
ture, wherein the cloud performs the heavy lifting for
computing-intensive tasks and storing massive amounts of
data.

Offloading is an essential method in mobile cloud com-
puting (MCC) [5]–[11]. Due to the low battery capacity of
mobile devices, a significant amount of research has per-
formed on offloading. In [12], a combination of analysis and
dynamic profiling modules is used to partition the application
and specify which process should be transferred to the cloud.
The authors in [13] monitor the remote execution of complete
created VMs of smartphone system by using a profiler mod-
ule and execution controller. The main limitation of [12]
and [13] is the power consumption that is required for simple

FIGURE 2. Cloud computing service models.

FIGURE 3. The architecture of mobile cloud computing.

synchronisation with the emulation VM on the cloud [14].
Furthermore, the connection to the cloud is not secure.

The architecture of mobile cloud computing illustrated
in Figure 3.

The purpose of this paper is to investigate the applicability
of cloud computing in the area of smartphones applications.
The focus lies on how cloud computing can improve mobile
phone computational performance and usability. Because the
computational resources of mobile phones are limited and
because cloud computing could be a solution to improve
the mentioned area, in order to obtain this goal, a new
framework is developed.to improve security in the proposed
framework, a new hybrid cryptography algorithm is pro-
posed for achieving security in Mobile Cloud Computing
framework.

The significant contributions of this paper are summarized
as follow
• Building the proposed secure and cost-effective offload-
ing schema for mobile cloud computing

• Developing a mobile-cloud infrastructure that will
enable smartphone applications that are distributed both
in terms of data and computation.

VOLUME 7, 2019 120215



D. S. A. Elminaam et al.: SMCACC: Developing an Efficient Dynamic SMCACC

• This framework floods only intensive tasks to the cloud
in a dynamically way based on four constraints, namely,
the execution time of the tasks, CPU utilization, memory
consumed, and energy consumption.

• building new hybrid cryptography algorithms for
achieving security in the proposed framework.

• Four different types of mobile applications are used in
experimental studies to distinguish between light and
heavy mobile applications.

The remainder of the paper organized as follows: In
section 2, an overview of previous works presented.
In section 3, the materials and methods of the proposed
system are described. In section 4, results and discus-
sions are produced, before concluding and future work
in sections 5 and 6.

II. RELATED WORKS
A. MOBILE CLOUD OFFLOADING SYSTEM OVERVIEW
A lot of different approaches proposed recently focusing on
the challenges of mobile devices by moving computational
tasks to cloud resources for remote execution [5], [6]. Some of
these methods only transfer a process from the mobile device
to the replicated virtual machine (VM) on the cloud [12], [13].

In Fernando et al., [15], the authors provided an extensive
survey of mobile cloud computing research while highlight-
ing specific concerns of mobile cloud computing. The authors
presented a classification based on the critical issues in this
area and discussed different approaches to tackle these issues.

The synchronisation problem is handled by only offload-
ing acute services in [16], rather than the complete pro-
cess, to the cloud. Additionally, a model has been created to
decide whether the service needs offloading or not. Although,
the simplicity of the created model that prefer to make
always remote execution, sometimes executing services on
the mobile platform is crucial than offloading it to the cloud.
It is vital to use some security techniques to secure the trans-
ferred data.

Other frameworks are proposing to offload intensive
method only after partitioning the application [17]–[22].
These frameworks utilize an integer linear programming
model similar to the proposed framework that is created to
decide offloading decisions.

Many frameworks focus only on the limitations of a battery
lifetime, energy consumption, and the required total response
time, and ignoring the memory usage and the security of
the offloading process [23]. On the other hand, in [24],
a complete offloading to the full Android application from
the mobile to the cloud is applied, where this is considered
resource-consuming due in no small amount of data sent over
the network. What is more, there is a crucial need for any
security technique to save the application.

The main objective of the proposed method in [25] is to
minimize the data transmission and energy-saving, which
only offloads resource-intensive services and leverages the
Software-as-a-Service model for the configuration of the rig-
orous services on the cloud server.

In [25], a dynamic resource allocation model for schedul-
ing data-intensive applications on an integrated computa-
tion resource environment proposed. It composed of mobile
devices, cloudlets, and public cloud. The allocation process
is based on different restrictions related to the application
structure, data size, and network configuration. It evaluated
the performance of the proposed technique usingmany exper-
iments. Results showed that the proposed technique improves
the execution time for data-intensive applications by an aver-
age of 78%.

Other research can be found in [26]–[35].

B. SECURITY ISSUES ON CLOUD COMPUTING
A lot of different approaches proposed recently focusing on
the challenges of security issues on cloud computing by using
different encryption techniques [37]–[50]. Some of these
methods only use a single encryption techniques methods and
other used hybrid encryption.

The authors in [37] used a multi-cloud strategy to handle
problems such as loss of privacy and loss of data. The pro-
posed method addressed data confidentiality problem. The
proposed method encrypts data through RSA before sending
to the cloud. The system consists of two clouds, the applica-
tion logic, and the data logic. When comparing the proposed
system with the conventional system, the proposed system
achieved security, integrity, and confidentiality.

In [45], the authors concentrate on storing data on cloud
computing in an encrypted format using fully homomorphic
encryption.

In [46], the authors applied the ElGamal algorithm to
enhance cloud security and allow re-encrypting ciphertext
in two levels (first level and second level). The encryption
process takes place at the data owner side, CSP acts as a mid-
way between the data owner and data user, CSP re-encrypts
ciphertext with re-encryption key.

The authors in [45] present a new hybrid security method
for achieving data security. Data is split into blocks of bits.
Genetic algorithm is applied to every two blocks of bits. The
results of each Genetic Algorithm are a block of ciphertext.
Each ciphertext is stored in a different location.

Many frameworks focused only on the limitations of the
security of cloud computing and suggested a new frame-
work for a check on the availability of data over the cloud
environment.

C. SECURITY ISSUES ON MOBILE CLOUD COMPUTING
Although the cloud-based approach can intensely extend the
capability of mobile devices, the assignment of developing a
secure and reliable mobile cloud offloading system remains
challenging [51]. In recent years, numerous works about
security in mobile cloud offloading and cloud computing has
been presented [52]–[55].

Several security challenges are existing in the mobile cloud
offloading scenario.

120216 VOLUME 7, 2019



D. S. A. Elminaam et al.: SMCACC: Developing an Efficient Dynamic SMCACC

The authors in [56] proposed a technique with an outstand-
ing feature of data integrity and confidentiality. The technique
is based on the concept of RSA algorithm, Hash function
to provide better security to the data stored on the mobile
cloud. In this scheme, encryption is used to provide security
to the data while in transit. Because the encrypted file is
stored in the cloud, so the user can believe that his data is
secure.

Garg and Sharma [57] proposed a secure data service that
outsources data and security management to cloud in trusted
mode. The secure data service allows mobile users to move
data and data sharing overhead to cloud without disclosing
any information.

Taking into consideration all of the mentioned work,
other works considered security in MCC, memory usage
constraints in their models. In this paper, a model
that handles four different constraints in the offloading
decision will be formulated. This model made the offload-
ing decision dynamically at runtime. Besides, we pro-
vided this framework with new hybrid cryptography
protocols to secured the offloaded data to the cloud.
The proposed framework is tested with four different
types of mobile applications that were developed using
Android.

III. MATERIALS AND METHODS
The proposed framework was developed to help software
owners in dividing the processing operations of their appli-
cations between those running on the mobile site and the
server-side based on different metrics such as the execution
time of the separated methods; memory consumed, the power
consumed for eachmethod. It also uses a hybrid cryptography
method designed to secure the data stored and transferred in
minimum time. First, we present the framework architecture,
and then we present the implementation of the hybrid cryp-
tographymethod that was added to secure the transferred data
from any software.

A. FRAMEWORK ARCHITECTURE
In order to use the framework, the software should first upload
an application on it, which will then be processed, as shown
in Figures 4, 5, and 6.

Algorithm 1 Framework Execution Flow
i. Get the implemented application
ii. Divide the project into a set of methods
iii. Calculate the execution time for running eachmethod
iv. Determine the method with the most massive execu-

tion time
v. Store running configurations

As shown in Fig 6, the framework architecture consists
of five modules, namely, application methods, estimator,
decision-maker, mobile manager, and cloud manager.

The framework starts to work at the method level, where
the developers need to add all exhaustive methods at the

FIGURE 4. Main Framework architecture.

FIGURE 5. Framework procedure flow.

developing step. These methods should require additional
computation resources and can be offloaded to the cloud for
remote execution.
Estimator: The estimator module is responsible for identi-

fying these methods for local execution on the mobile device
and remote execution on the cloud with different input sizes
by calculating the values of execution time, memory usage,
CPU utilization, and energy consumption for each method.
Decision maker: it obtains the values of execution time,

memory usage, CPU utilization, and energy consumption
from the estimatormodule for eachmethod. Then, themodule
creates a new file for each.
MobileManager: is deployed on the mobile side only if the

methods executed on the mobile side, the file is updated with
the new values. If the methods executed on the cloud side,
the mobile manager decides to encrypt the offload data or not
using one of our proposed hybrid cryptography algorithms.

VOLUME 7, 2019 120217



D. S. A. Elminaam et al.: SMCACC: Developing an Efficient Dynamic SMCACC

FIGURE 6. Detailed Framework architecture.

Cloud Manager: is deployed on the cloud side only if it
received methods from the mobile manager to be executed
on the cloud.

Therefore, the objective function shouldminimize the sum-
mation of four parameters as listed below.
• Cost of transferring methods from mobile to cloud
• Memory used
• CPU used
• Power Consumption

Also, take in consideration three constraints that must be
handled as follows:
• Minimize thememory used by the application methods
on the mobile device. This constraint can guarantee that
the total memory for executing the application methods
remotely on the cloudmust be less than the total memory
consumed for executing the methods of the application
locally on the mobile device.

• Minimize the total execution time, that is, the second
constraint, for the application. This constraint can guar-
antee that the total time for executing the application
methods remotely on the cloudmust be less than the total
time for executing the methods of the application locally
on the mobile device.

• Minimize the total energy consumption, that is,
the last constraint for the objective function. This con-
straint deals with the energy consumed by executing the
application method.

After dividing the methods into two sets (i.e., the methods
to be run on the mobile side, and those run on the server-
side), the application will run with the stored configuration.

The framework calculates the time, memory utilization, aver-
age CPU/processor cycles and average power/battery con-
sumption for each method in the application to determine
which methods should run on mobile and which should run
on the server. The framework calculates these values based
on the following formulas:

Time = (OPafter − OPbefore) ∗ 60 ∗ 60 (1)

where OPafter and OPbefore are the operating system time
after executing the method and before executing the method,
respectively.

Memory = (AMafter − AMbefore) ∗ 1024 (2)

where AMafter and AMbefore are the allocated memory after
executing the method and before executing the method,
respectively.

CPU cycles = No. of Cycles (3)

where No. of Cycles are calculated in connection with the
use of the method for the following subtasks:
1) Load (5 cycles)
2) Store (4 cycles)
3) R-type (4 cycles)
4) Branch (3 cycles)
5) Jump (3 cycles)

Power = (0.00148775) ∗ No. of bytes (4)

where (0.00148775) is the power consumption per byte.

B. HYBRID CRYPTOGRAPHY METHODS
The proposed framework uses a hybrid cryptography method
developed in work [36]–[38] to secure information stored
and transmitted through the cloud. The hybrid cryptography
method aims to encrypt and secure the stored and transmitted
fingerprints efficiently.
• First Hybrid cryptography method

The Encryption phase is shown in Figure 5-1. The plaintext
is divided into n blocks, Bi. Each block consists of 128 bits.
Then, it is divided into two parts P1 (0: n/2-1) blocks and P2
(n/2: n-1) blocks. If n is not integer number and has a fraction,
NHCP protocol uses padding with null for the last block to be
128 bits.

The first n/2 blocks are encrypted using (AES and ECC)
hybrid encryption algorithm, as illustrated below.
P1 will be encrypted using AES by the key ki, which is the

secret key of AES encryption algorithm with size 128 bits. Ki
is encrypted by ECC to produce Kj with length L.

M =
∑i=n/2−1

i=0
(Bi) (5)

K j = ECCenc(TCPK , ki−1) for 0 < j ≤ L− 1 (6)

where ECCenc is Elliptic Curve encryption function.
It cyphers the input with the trust centre public key (TCPK ),
which is used as a function to authenticate the key.

ci = E AES(Kj,Bi) (7)

where E AES is the AES encryption function.

120218 VOLUME 7, 2019



D. S. A. Elminaam et al.: SMCACC: Developing an Efficient Dynamic SMCACC

In parallel, the remaining n/2 blocks are encrypted
using the BLOWFISH- RSA algorithm. BLOWFISH- RSA
algorithm guarantees developing a stronger algorithm, as
follows:

M =
∑i=n−1

i=n/2
(Bi) (8)

In this algorithm, two huge prime numbers are chosen;
p and q. Then, x = p×q, φ(x) = (p−1)× (q−1). A number
relatively prime to φ is chosen; d . Then, e is calculated such
that e × d = 1 mod φ(x), and Public key (e, x) is used for
encrypting the key of BLOWFISH.

Kj = RSAenc(ki−1) for 0 < j ≤ L − 1 (9)

Ci = EBLOWFISH (Kj,Bi) (10)

MD-5 is applied to the cipher texts ci and Ci. It is the best
performance of hashing function security.

di = MD− 5(ci) (11)

Di = MD− 5(Ci) (12)

At the final stage of the encryption process, the two n/2 blocks
are integrated to generate cypher text of n blocks, and it is sent
to the sink node. The corresponding hash values (di and Di)
with size 128 bits for each one are concatenated and sent to
the sink node at the same time.

C = ci+Ci (13)

D = di + Di (14)

The proposed encryption algorithm is shown in Algorithm 1.

� Strength of the First Hybrid Cryptography
algorithm

In the first Hybrid Cryptography algorithm, splitting the
plain text improves the strength of the proposed cryptog-
raphy algorithms. The intruder will be not able to iden-
tify which type of specific algorithm is applied to generate
the ciphertext. Thus, it is impossible to decrypt the cypher
text.

• Second Hybrid cryptography methods
In this paper, we build another two Hybrid cryptogra-
phy methods shown in algorithm 2, and algorithm 3.
Figure 7 shows the system encrypting the data using
the Krishna encryption algorithm and triple DES encryp-
tion algorithm. It works on encrypting fingerprints images
using the Krishna encryption algorithm and the triple DES
encryption algorithm. Investigating previous work, the result
shows that the first hybrid encryption algorithm takes the
shortest time to encrypt data compared with all other
algorithms.

The framework calculates the power consumption after
applying the encryption algorithm based on the following
formula.

Power = (0.00148775) ∗ No. of bytes ∗ ET (15)

Algorithm The First Proposed Hybrid Encryption Algorithm
Input: M (Plain text), k (secret key of AES encryption), s
(128 bist size of the block);
Output: C (Ciphertext), ci (encrypted text using AES with
ECC), Ci(encrypted text using RSA), D (hashing value of
cypher text);
1. n = M/s;
2. let i = 0;
3. do{
4. m =

∑i=n/2−1
i=0 (Bi) The first part of plain

text; what is m and where it is used, what is Bi
5. for(j = 0; j <= n − 1; j++)
6. {
7. Kj= ECCenc(TCPK , ki−1);
8. }
9. ci = EAES (Kj, Bi);

10. di= MD-5 (ci);
11. i ++;
12. }
13. while(i <n/2);
14. i = (n/2)
15. Let p and q two large prime numbers
16. x = p×q
17. φ(x) = (p − 1) × (q − 1)
18. Let d a relatively prime number to φ
19. e × d = 1 mod φ(x)
20. Let (e, x) public key of RSA.
21. do{
22. M =

∑i=n
i=n/2 (Bi) second part of plain text which

encrypted simultaneously with the first part;
23. Kj= RSAenc(ki−1);
24. Ci = EBLOWFISH (Kj, Bi); ;
25. Di= MD-5 (Ci);
26. }
27. while(i < n);
28. C = ci + Ci;
29. D = di + Di;

where (0.00148775) is the power consumption per byte, and
ET is the encryption time.

EVALUATION AND ANALYSIS
The proposed framework is evaluated using four different
types of mobile applications, as shown in Table 1. The
experimental results measure four parameters for running the
application methods locally on a mobile device and when
offloading the methods to the cloud by using the framework.
These parameters include processing Time, CPU utilization,
battery consumption, and memory usage.

IV. FRAMEWORK PROTOTYPE
In this section, we will introduce an example for dividing
the application using the implemented framework. As shown
in Figure 8 and Figure 9, the software owner selects the

VOLUME 7, 2019 120219



D. S. A. Elminaam et al.: SMCACC: Developing an Efficient Dynamic SMCACC

FIGURE 7. Hybrid encryption algorithm using Krishna and triple-DES
algorithms.

application he wants to divide to yield the configuration of
the running process of this application. Figure 9 illustrates
the configuration of the running process for the car store
application as an example. Figure 10 to Figure 16 shows
how to use the fingerprint application. Figure 17 to
Figure 24 demonstrate how to use the address book applica-
tion. Figure 25 to Figure 34 shows how to use the car store
application.
• Fingerprint application prototype
• Test case: Name: Person 13, Password: user’s
fingerprint

TABLE 1. Applications used in the experimental.

Algorithm 2 Algorithm for Encryption
1. Read Plain text file(ptF)
2. Krishna is used to encrypting (ptF) resulting in (Ck1)
3. Triple DES key1 is used to encrypt a (Ck1) resulting

in (Ck2d1)
4. Triple DES key2 is used to decrypt (Ck2d1) resulting

in (Ck3d2)
5. Triple DES key3 is used to encrypt (Ck3d2) resulting

in (Ck4d3)
6. Final Cipher text Ck4d3 is that resulting from encryp-

tion using Krishna and Triple DES algorithms.

Algorithm 3 Algorithm for Decryption
1. The ciphertext (Ck4d3).
2. Triple DES key3 is used to decrypt (Ck4d3) resulting

in (Ck3d2)
3. Triple DES key2 is used to encrypt (Ck3d2) resulting

in (Ck2d1)
4. Triple DES key1 is used to decrypt (Ck2d1) resulting

in (Ck1)
5. Krishna is used to decrypting a file (Ck1) resulting in

(ptF)

FIGURE 8. Framework interface.

• Address book application prototype
• Car store application prototype

A. EXPERIMENTAL AND EVALUATION RESULTS
1) FINGERPRINT IMPLEMENTATION SYSTEM
Each system is divided into two phases. The first phase is
applying all processing on the mobile side, and the second
phase is applying part of processing on the server-side while
keeping the interface on the mobile side. Figure 35 illustrates
the first phase, while Figure 36 illustrates the second phase.

• The first phase (mobile side)

◦ Preprocessing:

Registration steps: to register a new person, several steps
must be completed:
Step 1: A person will enter his name (X) and his

fingerprint (FBY).

120220 VOLUME 7, 2019



D. S. A. Elminaam et al.: SMCACC: Developing an Efficient Dynamic SMCACC

FIGURE 9. Example of getting the configuration of the car store
application.

FIGURE 10. Configuration of the car store application.

FIGURE 11. Opening of the fingerprint application.

Step 2: The system will convert a fingerprint (FBY) to an
encoded fingerprint (FBY’) using a base64 encoding algo-
rithm.

FIGURE 12. Login page.

FIGURE 13. Entering username and password (user’s fingerprint).

FIGURE 14. Submitting data.

Step 3: The system will save the person name and the
encoded fingerprint (FBY’) in the database ‘‘Fingerprints.’
A person (X) can register more than one fingerprint.

VOLUME 7, 2019 120221



D. S. A. Elminaam et al.: SMCACC: Developing an Efficient Dynamic SMCACC

FIGURE 15. Sending data to server.

FIGURE 16. Verification screen.

FIGURE 17. Application main menu.

Login steps:
Step 1:A person will enter his name (X) and his fingerprint

(FBY).
Step 2: The system will submit the person name (X) and

his fingerprint (FBY) to the web service GetData (X, FBY).
Step 3: The system will convert the fingerprint (FBY)

to an encoded fingerprint (FBY’) using a base64 encoding
algorithm.

FIGURE 18. Choosing the (Add new Person) method.

FIGURE 19. Opening of the fingerprint application.

FIGURE 20. Login page.

Step 4:The systemwill retrieve all fingerprints (FBY_List)
belonging to person (X) to form the database ‘Fingerprints.’
Step 5: The system will compare all fingerprints

(FBY_List) belonging to person (X) to form the database
‘Fingerprints’ with the encoded fingerprint (FBY’).
Step 6: The systemwill return the results to the web service

GetData (X, FBY).

120222 VOLUME 7, 2019



D. S. A. Elminaam et al.: SMCACC: Developing an Efficient Dynamic SMCACC

FIGURE 21. Submitting user choice.

FIGURE 22. Choosing the (View address book) method.

FIGURE 23. Submitting user choice.

Step 7: The systemwill return the results to the user (Login
successfully - error).
◦ Print result:

On the mobile side, printing the results requires several
steps:

The system will return the results to the user (Login suc-
cessfully - error).
• The second phase (server-side)
Registration steps: on the server-side, to register a new

person, several steps must be completed:

FIGURE 24. Viewing data stored in the address book.

FIGURE 25. Choosing the (Add new car) method.

FIGURE 26. Submitting user choice.

Step 1: A person will enter his name (X) and his
fingerprint (FBY).
Step 2: The system will convert the fingerprint (FBY)

to an encoded fingerprint (FBY’) using a base64 encoding
algorithm.
Step 3: The system will save the person name and the

encoded fingerprint (FBY’) in the database ‘Fingerprints.’
A person (X) can register more than one fingerprint.

VOLUME 7, 2019 120223



D. S. A. Elminaam et al.: SMCACC: Developing an Efficient Dynamic SMCACC

FIGURE 27. Entering car data.

FIGURE 28. Sending data to server.

FIGURE 29. Choosing the (Buy a car) method.

Login steps:
Step 1:A person will enter his name (X) and his fingerprint

(FBY).
Step 2: The system will submit a person name (X) and his

fingerprint (FBY) to the web service GetData (X, FBY).

FIGURE 30. Submitting user choice.

FIGURE 31. Choosing a car.

FIGURE 32. Sending data to the server.

Step 3: The system will convert the fingerprint (FBY)
to an encoded fingerprint (FBY’) using a base64 encoding
algorithm.
Step 4:The systemwill retrieve all fingerprints (FBY_List)

belonging to person (X) to form the database ‘Fingerprints.’

120224 VOLUME 7, 2019



D. S. A. Elminaam et al.: SMCACC: Developing an Efficient Dynamic SMCACC

FIGURE 33. Choosing the (View stock) method.

FIGURE 34. Viewing data exist in the stock.

FIGURE 35. Applying to process on the mobile side.

Step 5: The system will compare all fingerprints
(FBY_List) belonging to person (X) to form the database
‘Fingerprints’ with the encoded fingerprint (FBY’).
Step 6: The systemwill return the results to the web service

GetData (X, FBY).

2) GPS APPLICATION
In the experiments, the GPS application smartphone calcu-
lates some of GPS calculations such as distance between

FIGURE 36. Applying to process on the server-side.

FIGURE 37. Total Memory consumed (Kbytes) for running experiment
three.

different numbers of point’s and a different number
of parameters. the experiment done either the application run
totally on mobile devices only or running using the proposed
framework.
In the first step: comparison is conducted using two dif-

ferent types of GPS mode (using mobile GPS) and using the
mobile network.
In the second step: the GPS mode of operations, we have

to choose between manual or automatic calculation to get
latitude or longitude for each point.
• If automatic calculation is selected, we have to enter the
number of points, and the system gets points every forty
second

• If manual calculation is selected, we have to click to get
points

VOLUME 7, 2019 120225



D. S. A. Elminaam et al.: SMCACC: Developing an Efficient Dynamic SMCACC

TABLE 2. GPS application calculations steps.

FIGURE 38. Memory Consumed (KBYTES) for running Experiment two. FIGURE 39. Total Memory consumed (Kbytes) for running experiment
three.

120226 VOLUME 7, 2019



D. S. A. Elminaam et al.: SMCACC: Developing an Efficient Dynamic SMCACC

FIGURE 40. Total Memory consumed (Kbytes) for running experiment
four.

TABLE 3. Memory consumed for execution application on mobile
smartphone and cloud web services (Kbytes) (Getting points using
GPS Satellite).

In the third step: After selecting a method to get points
either manually or automatic, we have to choose between
calculation way on mobile or by the proposed framework

a) In the case of calculation on a mobile device only u,
the calculation is directed using the following steps

1. GPS reading to determine latitude and longitude
for each point either by GPS for mobile (smart-
phone/satellite) or from a mobile network.

2. Then calculate the distance between two points or
more using different algorithms.

TABLE 4. Memory consumed for execution application on mobile
smartphone and cloud web services (getting points using
network GPS).

3. The Application will perform all calculations on
a smartphone device and calculate the results and
the consuming resources such as Memory con-
sumed, CPU usage, Time consumed for calcula-
tion, battery consumed to

4. Calculate the resources consumed for running all
applications methods on the mobile-only.

b) In the case of partition and offloading calculation on
a cloud and mobile, the comparison is conducted using
three different types of operations.

We implement cloud clone application that enables
the mobile applications developers to decide to perform
all application processes on an Android mobile device
or to divide the application processes to execute on
mobile and cloud. The framework uses security tech-
niques (AES /RSA encryption and hybrid cryptography
algorithms) and without using security as illustrated as
in Table 2.

• Mathematical Calculations

• Distance using Haversine formula:

In this experiment, distance calculations between two point
using the ‘haversine’ formula is used to calculate the

VOLUME 7, 2019 120227



D. S. A. Elminaam et al.: SMCACC: Developing an Efficient Dynamic SMCACC

TABLE 5. Memory consumed(Kbytes) manual calculation for getting
points using GPS satellite.

great-circle distance between two points

a = sin2(1ϕ/2)+ cos(ϕ1).cos(ϕ2).sin
2(1λ/2) (16)

c = 2.atan2(
√
a,
√
(1− a)) (17)

d = R.c (18)

where 1ϕ is latitude difference (lat2− lat1), 1λ is longi-
tude difference (long2− long1), R is earth’s radius(mean
radius = 6,371km)
• Distance using Spherical low of Cosines: (spherical
law of cosines formula )

d = acos(sin(ϕ1).sin(ϕ2)+ cos(ϕ1).cos(ϕ2).cos(1λ)).R

(19)

TABLE 6. Memory consumed(Kbytes) manual calculation for getting
points using network GPS.

• Low of Cosines Distance using Equirectangular
Approximation:

x = 1λ.cos(ϕ) (20)

y = 1ϕ (21)

d = R.
√
(x2 + y2) (22)

• Bearing

θ = atan2(sin(1λ).cos(ϕ2), cos(ϕ1).sin(ϕ2)

− sin(ϕ1).cos(ϕ2).cos(1λ)) (23)

120228 VOLUME 7, 2019



D. S. A. Elminaam et al.: SMCACC: Developing an Efficient Dynamic SMCACC

FIGURE 41. Total Memory Consumed (Kbytes) on Mobile Only for
Execution Application on Cloud Web Services (Getting points
automatically using GPS Satellite).

FIGURE 42. – Memory consumption in mobile.

B. RESULT FOR GPS APPLICATION
1) EXPERIMENT ONE: GETTING POINTS USING GPS
SATELLITE WITHOUT SECURITY (AUTOMATIC
CALCULATIONS)
Table 3 shows resources consumed in case of automatic
calculation in case of points automatically every forty sec-
onds using GPS satellite. The number of points range from
two points till ten points (GPS calculation on mobile smart-
phone and calculation migrated to cloud and return results

TABLE 7. Comparing the performance while executing the two methods
on the mobile site.

TABLE 8. Comparing the performance while executing the two methods
on the server side.

TABLE 9. Performance while executing the ‘add new fingerprint’ method
on the mobile side and the ‘check fingerprint (log in)’ method on the
server side.

TABLE 10. Comparing the performance while executing the two methods
on the mobile site.

TABLE 11. Comparing the performance while executing the two methods
on the server side.

TABLE 12. Performance while executing the ‘add new person’ method on
the mobile side and ‘view address book’ method on the server side.

VOLUME 7, 2019 120229



D. S. A. Elminaam et al.: SMCACC: Developing an Efficient Dynamic SMCACC

TABLE 13. Comparing the performance while executing the two methods
on the mobile site.

TABLE 14. Comparing the performance while executing the two methods
on the server side.

TABLE 15. Performance while executing the ‘add new person’ method on
the mobile side and view address book method on the server side.

TABLE 16. Result for all applications.

to mobile) in case of distance range from approximately
100 meters tall 400 meters either in case of all calcula-
tion done on mobile device or application is partitioned and
offloading on cloud to perform distance calculation on cloud.

TABLE 17. Performance while executing the ‘add new person’ method on
the mobile side and view address book method on the server side.

FIGURE 43. Memory consumption in cloud.

• Results analysis for getting Points Automatically
(GPS Satellite)

Figure 37 shows the performance of executing the appli-
cation on mobile or cloud in terms of memory consumed
using different setting. the results show that the resources
consumed on a mobile smartphone in case of MCC will
decrease approximately 48% of memory consumed for run-
ning application on themobile-only.Most of the resources are
consumed on the cloud andminimize the resources consumed
in the mobile smartphone.

2) EXPERIMENT TWO: GETTING POINTS USING NETWORK
GPS USING AUTOMATIC CALCULATIONS
WITHOUT SECURITY
Table 4, and Figure 38 show the resources consumed in case
of automatic calculation(getting points every 40-second

120230 VOLUME 7, 2019



D. S. A. Elminaam et al.: SMCACC: Developing an Efficient Dynamic SMCACC

FIGURE 44. Comparison between memory consumption in mobile and
cloud.

TABLE 18. Average time consumed for all projects.

using Network GPS for execution application on cloud
web services). The experimental setup as done as in Exper-
iment (Automatic Calculations) getting Points using GPS
satellite

• Results analysis for getting Points Automatically
(Network GPS)

The performance of executing the application on mobile
or cloud in terms of memory consumed using different
cases are determined. The resources consumed on a mobile

FIGURE 45. Average time consumption in mobile.

FIGURE 46. Average time consumption in cloud.

FIGURE 47. Comparison between average time consumption in mobile
and cloud.

smartphone in case of MCC will decrease approximately
to the half of memory consumed for running application
on the mobile-only.

VOLUME 7, 2019 120231



D. S. A. Elminaam et al.: SMCACC: Developing an Efficient Dynamic SMCACC

TABLE 19. Average processor cycles consumed for all projects.

FIGURE 48. Average processor cycles consumption in mobile.

3) EXPERIMENT THREE: GETTING POINTS USING GPS
SATELLITE USING MANUAL CALCULATIONS
WITHOUT SECURITY
Table 5, and figure 39, show memory consumed (Kbytes) in
case of getting the pointmanually using GPS satellite using
the same setting as in the previous experiments
• Results analysis for getting Points manually usingGPS
satellite

According to the partition algorithm, most of the resources
consumed on a mobile smartphone will decrease approxi-
mately 46% of memory consumed for running application
on the mobile-only.

FIGURE 49. Average processor cycles consumption in cloud.

FIGURE 50. Comparison between average processor cycles consumption
in mobile and cloud.

4) EXPERIMENT FOUR: GETTING POINTS USING NETWORK
GPS USING MANUAL CALCULATIONS
WITHOUT SECURITY
Table 6, figure 40, show the memory consumed (Kbytes) in
case of getting the point manually using Network GPS for
execution application in the same setting

• Results analysis for getting Points manually using
Network GPS

According to the partition algorithm, most of the resources
consumed on a mobile smartphone will decrease to
approximately 39% of memory consumed for running
application on the mobile-only.

5) EXPERIMENT FIVE: GPS CALCULATIONS WITH SECURITY
a: EXPERIMENTAL (AUTOMATIC CALCULATIONS) GETTING
POINTS USING GPS SATELLITE, AND NETWORK GPS
Figure 41 shows the resources consumed in case of automatic
calculation in case of getting location automatically every
40 seconds using GPS satellite and taking security in con-

120232 VOLUME 7, 2019



D. S. A. Elminaam et al.: SMCACC: Developing an Efficient Dynamic SMCACC

TABLE 20. Average power consumed for all projects.

FIGURE 51. The average power consumed in mobile.

sideration (with security AES/RSA encryption and with first
proposed hybrid cryptography algorithm). Figure 42 shows
the results using Network GPS.

• Results analysis for getting Points Automatically (GPS
Satellite) (with security)

- the partition algorithm using a different type of cryptogra-
phy protocols or without using security shows

• According to the partition algorithm, most of the
resources consumed on a mobile smartphone will
increase approximately 20% of memory consumed for
running application on the mobile-only.

FIGURE 52. The average power consumed in the cloud.

b: RESULT FOR FINGERPRINT APPLICATION
(2nd APPLICATION)
This system contains two functions:

1- Add a new fingerprint
2- Check a fingerprint (Login)
Where:
The average time in seconds is the mean value of the time

taken to execute themethod after running the system 50 times.
The average memory in bytes is the mean value of the

memory utilized to execute the method after running the
system 50 times.

The average CPU cycles are the mean value of the CPU
cycles taken to execute the method after running the system
50 times.

The average power is the mean value of the power
taken to execute the method after running the system
50 times.

c: RESULT FOR ADDRESS BOOK APPLICATION

FIGURE 53. Comparison between average power consumed in mobile
and cloud.

VOLUME 7, 2019 120233



D. S. A. Elminaam et al.: SMCACC: Developing an Efficient Dynamic SMCACC

d: RESULT FOR CAR STORE APPLICATION

TABLE 21. Performance with encrypting the transferred data while
executing the ‘add new fingerprint’ method on the mobile side and ‘check
fingerprint (log in)’ method on the server side.

FIGURE 54. Time consumed before and after encryption in fingerprint.

e: RESULT MATRIX FOR ALL SYSTEMS
Table 16 illustrates the results for all the applications and
shows the separation of methods implemented by the frame-
work on the project’s methods.

Table 17 shows all the memory consumed by the applica-
tions and the separation implemented by the framework on
the project’s methods.

f: COMPARISON BETWEEN TIMES CONSUMED AFTER
USING THE FRAMEWORK AND APPLYING THE HYBRID
CRYPTOGRAPHY METHODS.
• Fingerprint application

TABLE 22. Performance with encrypting the transferred data while
executing the ‘add new fingerprint’ method on the mobile side and ‘check
fingerprint (log in)’ method on the server side.

• Address book application

FIGURE 55. Time consumed before and after encryption in the address
book.

• Car store application

TABLE 23. Performance with encrypting the transferred data while
executing the ’add new fingerprint’ method on the mobile side and ’check
fingerprint (log in)’ method on the server side.

FIGURE 56. Time consumed before and after encryption in ‘car store’.

120234 VOLUME 7, 2019



D. S. A. Elminaam et al.: SMCACC: Developing an Efficient Dynamic SMCACC

V. CONCLUSION
In this paper, an optimized framework is proposed to improve
the efficiency of offloading computation from the mobile
device to the cloud. This framework can offload only
the application methods that consume substantial mobile
resources. This framework divides application processing
methods into two sets, one running on the mobile site and the
other running on the server-side based on the execution time
of the separated methods. It also presents an extension for
mobile cloud computing models by adding a hybrid cryptog-
raphy method.When using the framework, the running of any
application is separated into two parts. The framework con-
tributes to developing both light and heavy mobile applica-
tions, such as GPS calculation, fingerprint, and face recogni-
tion. These applications can benefit from our proposed model
while saving energy and improving performance compared
to previous techniques. Also, this approach allows mobile
applications to leverage cloud resources by allowing some
of the services to run on the cloud, thus alleviating resource
constraints stemming from the mobile devices themselves.
Mobile applications can be readily divided into a group of
services without modifying the application source code or the
OS.

Finally, our framework protects service data on the cloud
using security, hence minimizing outside risks. Using this
framework and accounting for the added hybrid cryptography
method, the aggregate processing time increased by 0.8 to 1 s.

This framework is tested using four mobile application.
the first mobile application is GPS calculations. The first
application performed GPS calculations.

Comparison is conducted using two different types of GPS
mode (using mobile GPS), and using mobile network. for
each type of GPS .longitude and latitude for each point can
be obtained on it either manually or automatic.

Firstly: in case of getting Points using GPS satellite (auto-
matic calculation)
• The memory consumed using different distance and
number of points on a mobile smartphone will decrease
approximately 48 % of memory consumed for running
application on the mobile-only.

Secondly: in case of getting Points using GPS satellite (man-
ual calculation)
• The resources consumed on a mobile smartphone will
decrease approximately 46% of memory consumed for
running application on the mobile-only.

Thirdly: in case of getting Points using Network GPS (auto-
matic calculation)
• Thememory consumed using different cases on amobile
smartphone will decrease approximately to the half
of memory consumed for running application on the
mobile-only.

Fourthly: in case of getting Points using Network GPS (man-
ual calculation)
• The memory consumed using different cases on a
mobile smartphone will decrease approximately 39% of
memory consumed for running application on the
mobile-only.

The second mobile application is a fingerprint. The system
aims to store and retrieve data to and from the cloud effi-
ciently. The system was developed based on two phases:
first, applying all the processing steps to register a new user,
converting, checking and saving fingerprints on the mobile
side; then, applying all the processing steps to register a new
user, converting and checking fingerprints, and saving them
on the server-side while keeping the interface on the mobile
side. Extensive experiments were performed to study the
efficiency of the implemented system. The system was tested
on various database sizes. The size of the images containing
the fingerprints ranged from 10 kb to 480 kb. The two phases
were tested, and the time is taken to apply all processing steps,
including registering a new user, converting and checking
fingerprints and saving fingerprints on the mobile side was
calculated. The system ran 50 times for each database size to
yield an average time. The result points to an average time
taken to process the data of 16 seconds.

The time is taken by applying all the processing steps of
registering a new user, converting and checking fingerprints
and saving fingerprints on the server-side while maintaining
an interface on the mobile side was calculated. The average
time consumed to process the data is 4.11 seconds. The pro-
posed system proves that applying all the processing steps of
registering a new user, converting and checking fingerprints
and saving fingerprints on the server-side while keeping the
interface on the mobile side. It is more efficient than applying
all the processing steps of registering a new user, convert-
ing and checking fingerprints and saving fingerprints on the
server-side while keeping the interface on the mobile side.

REFERENCES
[1] B. Gao, L. He, X. Lu, C. Chang, K. Li, and K. Li, ‘‘Developing energy-

aware task allocation schemes in cloud-assisted mobile workflows,’’ in
Proc. IEEE Int. Conf. Comput. Inf. Technol.; Ubiquitous Comput. Com-
mun.; Dependable, Autonomic Secure Comput.; Pervasive Intell. Comput.,
Oct. 2015, pp. 1266–1273.

[2] I. Elgendy, W. Zhang, C. Liu, and C.-H. Hsu, ‘‘An efficient and secured
framework for mobile cloud computing,’’ IEEE Trans. Cloud Comput., to
be published.

[3] R. D. Shobha, M. Pounambal, and V. Saritha, ‘‘An efficient algorithm for
dynamic task offloading using cloudlets in mobile cloud computing,’’ Int.
J. Commun. Syst., vol. e3890, pp. 1–10, Jan. 2019.

[4] D. S. A. Elminaam, H. M. A. Kader, M. M. Hadhoud, and S. M. El-Sayed,
‘‘Elastic framework for augmenting the performance of mobile appli-
cations using cloud computing,’’ in Proc. 9th Int. Comput. Eng. Conf.
(ICENCO), Dec. 2013, pp. 134–141.

[5] A. Botta, W. De Donato, V. Persico, and A. Pescapé, ‘‘Integration of cloud
computing and Internet of Things: A survey,’’ Future Gener. Comput. Syst.,
vol. 56, pp. 684–700, Mar. 2016.

[6] L. Yang, J. Cao, S. Tang, D. Han, and N. Suri, ‘‘Run time application
repartitioning in dynamic mobile cloud environments,’’ IEEE Trans. Cloud
Comput., vol. 4, no. 3, pp. 336–348, Jul./Sep. 2016.

[7] Y. Wang, R. Chen, and D.-C. Wang, ‘‘A survey of mobile cloud comput-
ing applications: Perspectives and challenges,’’ Wireless Pers. Commun.,
vol. 80, no. 4, pp. 1607–1623, 2015.

[8] A. U. R. Khan, M. Othman, S. A. Madani, and S. U. Khan, ‘‘A survey
of mobile cloud computing application models,’’ IEEE Commun. Surveys
Tuts., vol. 16, no. 1, pp. 393–413, 1st Quart., 2013.

[9] T. Xing, D. Huang, S. Ata, and D. Medhi, ‘‘MobiCloud: A geo-distributed
mobile cloud computing platform,’’ in Proc. 8th Int. Conf. Netw. Service
Manage., Oct. 2012, pp. 164–168,

VOLUME 7, 2019 120235



D. S. A. Elminaam et al.: SMCACC: Developing an Efficient Dynamic SMCACC

[10] X. Chen, ‘‘Decentralized computation offloading game for mobile cloud
computing,’’ IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4, pp. 83–974,
Apr. 2014.

[11] M. V. Barbera, S. Kosta, A.Mei, and J. Stefa, ‘‘To offload or not to offload?
The bandwidth and energy costs of mobile cloud computing,’’ in Proc.
IEEE INFOCOM, Apr. 2013, pp. 1285–1293.

[12] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, ‘‘CloneCloud:
Elastic execution between mobile device and cloud,’’ in Proc. 6th Conf.
Comput. Syst., Apr. 2011, pp. 301–314.

[13] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, ‘‘ThinkAir:
Dynamic resource allocation and parallel execution in the cloud for mobile
code offloading,’’ in Proc. IEEE INFOCOM, Mar. 2012, pp. 945–953.

[14] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and W. DO, ‘‘Energy-
optimal mobile cloud computing under stochastic wireless channel,’’ IEEE
Trans. Wireless Commun., vol. 12, no. 9, pp. 4569–4581, Sep. 2013.

[15] N. Fernando, S. W. Loke, and W. Rahayu, ‘‘Mobile cloud computing:
A survey,’’Future Generat. Comput. Syst., vol. 29, no. 1, pp. 84–106, 2013.

[16] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso, ‘‘Calling the
cloud: Enabling mobile phones as interfaces to cloud applications,’’ in
Proc. 10th ACM/IFIP/USENIX Int. Conf. Middleware. Berlin, Germany:
Springer-Verlag, Nov. 2009, p. 5.

[17] S. Yi, C. Li, and Q. Li, ‘‘A survey of fog computing: Concepts, applications
and issues,’’ in Proc. Workshop Mobile Big, Jun. 2015, pp. 37–42.

[18] A. U. R. Khan, M. Othman, S. A. Madani, and S. U. Khan, ‘‘A survey
of mobile cloud computing application models,’’ IEEE Commun. Surveys
Tuts., vol. 16, no. 1, pp. 393–413, 1st Quart., 2014.

[19] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, ‘‘Serendip-
ity: Enabling remote computing among intermittently connected mobile
devices,’’ in Proc. 13th ACM Int. Symp. Mobile Ad Hoc Netw. Comput.,
Jun. 2012, pp. 145–154.

[20] W. Zhang, S. Han, H. He, and H. Chen, ‘‘Network-aware virtual machine
migration in an overcommitted cloud,’’ Future Gener. Comput. Syst.,
vol. 76, pp. 428–442, Nov. 2017.

[21] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, ‘‘Cuckoo: A computation
offloading framework for smartphones,’’ in Proc. Int. Conf. Mobile Com-
put., Appl., Services, vol. 76, 2010, pp. 59–79.

[22] E. Cuervo, A. Balasubramanian, D.-K. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, ‘‘MAUI: Making smartphones last longer with
code offload,’’ in Proc. Int. Conf. Mobile Syst., Appl., Services, 2010,
pp. 49–62.

[23] D. Kovachev, T. Yu, and R. Klamma, ‘‘Adaptive computation offloading
frommobile devices into the cloud,’’ inProc. IEEE 10th Int. Symp. Parallel
Distrib. Process. Appl., Jul. 2012, pp. 784–791.

[24] F. Xia, F. Ding, J. Li, X. Kong, L. T. Yang, and J. Ma, ‘‘Phone2Cloud:
Exploiting computation offloading for energy saving on smartphones in
mobile cloud computing,’’ Mobile Cloud Comput. Inf. Syst. Frontiers,
vol. 16, no. 1, pp. 95–111, Mar. 2014.

[25] M. Alkhalaileh, R. N. Calheiros, Q. V. Nguyen, and B. Javadi, ‘‘Dynamic
resource allocation in hybrid mobile cloud computing for data-intensive
applications,’’ in Proc. Int. Conf. Green, Pervasive, Cloud Comput. Cham,
Switzerland: Springer, May 2019, pp. 176–191.

[26] M. Shiraz, A. Gani, A. Shamim, S. Khan, and R. W. Ahmad, ‘‘Energy effi-
cient computational offloading framework for mobile cloud computing,’’
J. Grid Comput., vol. 13, no. 1, pp. 1–18, 2015.

[27] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, S. N. Srirama, and R. Buyya,
‘‘A context sensitive offloading scheme for mobile cloud computing
service,’’ in Proc. IEEE Int. Conf. Cloud Comput., Jun./Jul. 2015,
pp. 869–876.

[28] S. Guo, B. Xiao, Y. Yang, and Y. Yang, ‘‘Energy-efficient dynamic offload-
ing and resource scheduling in mobile cloud computing,’’ in Proc. IEEE
INFOCOM, Apr. 2016, pp. 1–9.

[29] W.-Z. Zhang, H.-C. Xie, and C.-H. Hsu, ‘‘Automatic memory control of
multiple virtual machines on a consolidated server,’’ IEEE Trans. Cloud
Comput., vol. 5, no. 1, pp. 2–14, Jan./Mar. 2017.

[30] Y. Li, M. Chen, W. Dai, and M. Qiu, ‘‘Energy optimization with dynamic
task scheduling mobile cloud computing,’’ IEEE Syst. J., vol. 11, no. 1,
pp. 96–105, Mar. 2017.

[31] D. S. Abdul, ‘‘Reliable the resources of mobile devices in cloud comput-
ing,’’ Int. J. Adv. Comput. Technol., vol. 10, no. 1, pp. 61–70, Mar. 2018.

[32] A. A. Taha, D. S. A. Elminaam, and K. M. Hosny, ‘‘An improved security
schema for mobile cloud computing using hybrid cryptographic algo-
rithms,’’ Far East J. Electron. Commun., vol. 18, no. 4, pp. 521–546,
Apr. 2018.

[33] S. M. El-Sayed, H. M. A. Kader, M. M. Hadhoud, and D. S. A. Elminaam,
‘‘Mobile cloud computing framework for elastic partitioned/modularized
applications mobility,’’ Int. J. Electron. Inf. Eng., vol. 1, no. 2, pp. 53–63,
Dec. 2014.

[34] D. S. A. Elminaam, H. M. A. Kader, M. M. Hadhoud, and M. S. El-Sayed,
‘‘GPS test performance: Elastic execution applications between mobile
device and cloud to reduce power consumption,’’ Int. J. Comput. Sci. Netw.
Secur., vol. 13, no. 12, pp. 6–13, Dec. 2013.

[35] N. Vallina-Rodriguez and J. Crowcroft, ‘‘Energy management techniques
in modern mobile handsets,’’ IEEE Commun. Surveys Tuts., vol. 15, no. 1,
pp. 179–198, 1st Quart., 2013.

[36] D. S. A. Elminaam, H. M. A. Kader, M. M. Hadhoud, and S. M. El-Sayed,
‘‘Increase the performance of mobile smartphones using partition and
migration of mobile applications to cloud computing,’’ Int. J. Technol.
Enhancements Emerg. Eng. Res., vol. 2, no. 5, pp. 1–10, May 2014.

[37] M. Sulochana and O. Dubey, ‘‘Preserving data confidentiality using multi-
cloud architecture,’’ in Proc. 2nd Int. Symp. Big Data Cloud Comput.
(ISBCC), vol. 3, no. 4, 2015, pp. 1–6.

[38] L. Tawalbeh and N. S. Darwazeh, ‘‘A secure cloud computing model based
on data classification,’’ Procedia Comput. Sci., vol. 52, pp. 1153–1158,
2015.

[39] P. Ratha, D. Swain, B. Paikaray, and S. Sahoo, ‘‘An optimized encryption
technique using an arbitrary matrix with probabilistic encryption,’’ in Proc.
3rd Int. Conf. Recent Trends Comput. (ICTRC), vol. 5, no 4, 2015, pp. 1–7.

[40] K. El Makkaoui and A. Beni-Hssane, ‘‘Fast cloud-RSA scheme for pro-
moting data confidentiality in the cloud computing,’’ Procedia Comput.
Sci., vol. 113, pp. 33–40, 2017.

[41] V. Ponnuramu and L. Tamilselvan, ‘‘Encryption for massive data storage
in cloud,’’ Comput. Intell. Data Mining, vol. 2, no. 2, pp. 27–37, 2015.

[42] Z. Kartit, A. Azougaghe, H. K. Idrissi, M. El Marraki, M. Hedabou,
M. Belkasmi, and A. Kartit, ‘‘Applying encryption algorithm for data
security in cloud storage,’’ in Advances in Ubiquitous Networking, vol. 3,
no. 3. Singapore: Springer, 2016.

[43] N. Sengupta and R. Chinnasamy, ‘‘Contriving hybrid DESCAST algorithm
for cloud security,’’ inProc. 11th Int. Multi-Conf. Inf. Process., vol. 5, no. 2,
2015, pp. 1–10.

[44] N. Balkish, A. M. Prasad, and V. Suma, ‘‘An efficient approach to enhance
data security in cloud using recursive blowfish algorithm,’’ in Proc.
48th Annu. Conv. Comput. Soc. India. Cham, Switzerland: Springer, vol. 1,
no. 1, 2014, pp. 575–582.

[45] M.M. Poteya, C. A.Dhote, andD.H. Sharmac, ‘‘Homomorphic encryption
for security of cloud data,’’ in Proc. 7th Int. Conf. Commun., vol. 1 no. 1,
2016, pp. 1–7.

[46] L. Xiong, Z. Xu, and Y. Xu, ‘‘A secure re-encryption scheme for data
services in a cloud computing environment,’’Concurrency Comput., Pract.
Exper., vol. 27, no. 17, pp. 4573–4585, 2015.

[47] S. K. S. ShaluMall, ‘‘A new security framework for cloud data,’’ in Proc.
8th Int. Conf. Adv. Comput. Commun., vol. 1, no. 1, 2018, pp. 1–11.

[48] V. R. Balasaraswathi and S. Manikandan, ‘‘Enhanced security for multi-
cloud storage using cryptographic data splitting with dynamic approach,’’
in Proc. IEEE Int. Conf. Adv. Commun., Control Comput. Technol., vol. 2,
no 3, May 2014, pp. 1190–1194.

[49] S. P. Kumar and R. Subramanian, ‘‘An efficient and secure protocol for
ensuring data storage security in cloud computing,’’ Int. J. Comput. Sci.
Issues, vol. 8, no. 1, p. 261, 2011.

[50] A. Sachde and M. Bhansali, ‘‘Enhancing cloud computing security using
AES algorithm,’’ Int. J. Comput. Appl., vol. 67, no. 9, pp. 1–5, 2013.

[51] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, ‘‘Heterogeneity in mobile
cloud computing: Taxonomy and open challenges,’’ IEEE Commun. Sur-
veys Tuts., vol. 16, no. 1, pp. 369–392, 1st Quart., 2013.

[52] I. A. Elgendy, M. Elkawkagy, and A. Keshk, ‘‘An efficient framework to
improve the performance of mobile applications,’’ Int. J. Digit. Content
Technol. Appl., vol. 9, no. 5, pp. 43–54, 2015.

[53] D. S. A. Elminaam, F. T. Elanezi, and K. M. Hosny, ‘‘An efficient frame-
work for mobile cloud computing,’’ in Proc. 32th Int. Bus. Inf. Manage.
Assoc. (IBIMA), Seville, Spain, Nov. 2018, pp. 5783–5796.

[54] D. S. A. Elminaam and Y. M. Wazery, ‘‘Resource sharing security in cloud
computing environment,’’ Int. Arab J. e-Technol., vol. 5, no. 2, pp. 47–57,
Jun. 2018.

[55] F. Liu, P. Shu, H. Jin, L. Ding, J. Yu, D. Niu, and B. Li, ‘‘Gearing resource-
poor mobile devices with powerful clouds: Architectures, challenges,
and applications,’’ IEEE Wireless Commun., vol. 20, no. 3, pp. 14–22,
Jun. 2013.

120236 VOLUME 7, 2019



D. S. A. Elminaam et al.: SMCACC: Developing an Efficient Dynamic SMCACC

[56] A. A. Taha, E. Dr-Diaa S. S. Abdelminaam, M. Khalid, and K. Hosny,
‘‘Enhancement the security of cloud computing using hybrid cryptography
algorithms,’’ Int. J. Adv. Comput. Technol., vol. 9, no. 3, pp. 36–42,
Dec. 2017.

[57] P. Garg and V. Sharma, ‘‘An efficient and secure data storage in mobile
cloud computing through RSA and Hash function,’’ in Proc. Int. Conf.
Issues Challenges Intell. Comput. Techn. (ICICT), Feb. 2014, pp. 334–339.

DIAA SALAMA ABD ELMINAAM was born
in 1982, KafrSakr, Sharkia, Egypt. He received the
B.Sc. degree (Hons.) from the Faculty of Com-
puters & Informatics, Zagazig University, Egypt,
in 2004, and the master’s degree in information
system, specializing in cryptography and network
security, and the Ph.D. degree in information sys-
tem from the Faculty of Computers and Informa-
tion,Menufia University, Egypt, in 2009 and 2015,
respectively. He has been an Assistance Professor

with the Information Systems Department, Faculty of Computers and Infor-
mation, Benha University, Egypt, since 2011. He has worked on several
research topics. He has contributed more than 40 technical articles in the
areas of wireless networks, wireless network security, information security,
Internet applications, cloud computing, mobile cloud computing, the Internet
of Things, and machine learning in international journals, international con-
ferences, local journals, and local conferences. His major research interests
include cryptography, network security, the IoT, big data, cloud computing,
and deep learning.

FARAH TURKEY ALANEZI was born in 1986,
Kuwait. She received the B.Sc. degree from
the Faculty of Information Technology and
Computing-Arab Open University, Kuwait,
in 2009. She is currently pursuing the master’s
degree with the Faculty of Computer and Infor-
mation, Benha University, Egypt, in 2016. She has
worked on several research topics. She has con-
tributed more than 2 technical articles in the areas
of cloud computing, and mobile cloud computing

in international journals, and international conferences. Her major research
interest includes security on mobile cloud computing.

KHALID M. HOSNY was born in 1966, Zagazig,
Egypt. He received the B.Sc., M.Sc., and Ph.D.
degrees from Zagazig University, Egypt, in 1988,
1994, and 2000, respectively, where he is cur-
rently a Professor in information technology with
the Faculty of Computers and Informatics. From
1997 to 1999, he was a Visiting Scholar, Univer-
sity of Michigan, Ann Arbor, and University of
Cincinnati, Cincinnati, USA. His research inter-
ests include image processing, pattern recognition,

multimedia, computer vision, and cloud computing. He has published three
edited books and more than 70 articles in international journals. He is a
Senior Member of ACM. He is serving as an editor and a scientific reviewer
for more than 35 international journals.

VOLUME 7, 2019 120237


